
Releasing Fast and Slow: An Exploratory Case Study at ING
Elvan Kula

Delft University of Technology
Delft, The Netherlands
e.kula@student.tudelft.nl

Ayushi Rastogi
Delft University of Technology

Delft, The Netherlands
a.rastogi@tudelft.nl

Hennie Huijgens
ING

Amsterdam, The Netherlands
hennie.huijgens@ing.com

Arie van Deursen
Delft University of Technology

Delft, The Netherlands
arie.vandeursen@tudelft.nl

Georgios Gousios
Delft University of Technology

Delft, The Netherlands
g.gousios@tudelft.nl

ABSTRACT
The appeal of delivering new features faster has led many software
projects to adopt rapid releases. However, it is not well under-
stood what the effects of this practice are. This paper presents an
exploratory case study of rapid releases at ING, a large banking
company that develops software solutions in-house, to characterize
rapid releases. Since 2011, ING has shifted to a rapid release model.
This switch has resulted in a mixed environment of 611 teams
releasing relatively fast and slow. We followed a mixed-methods
approach in which we conducted a survey with 461 participants
and corroborated their perceptions with 2 years of code quality
data and 1 year of release delay data. Our research shows that:
rapid releases are more commonly delayed than their non-rapid
counterparts, however, rapid releases have shorter delays; rapid
releases can be beneficial in terms of reviewing and user-perceived
quality; rapidly released software tends to have a higher code churn,
a higher test coverage and a lower average complexity; challenges
in rapid releases are related to managing dependencies and certain
code aspects, e.g. design debt.

CCS CONCEPTS
• Software and its engineering→ Software development pro-
cess management;

KEYWORDS
rapid release, release delay, software quality, technical debt

ACM Reference Format:
Elvan Kula, Ayushi Rastogi, Hennie Huijgens, Arie van Deursen, and Geor-
gios Gousios. 2019. Releasing Fast and Slow: An Exploratory Case Study at
ING. In Proceedings of the 27th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ES-
EC/FSE ’19), August 26–30, 2019, Tallinn, Estonia. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3338906.3338978

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5572-8/19/08. . . $15.00
https://doi.org/10.1145/3338906.3338978

1 INTRODUCTION
In today’s competitive business world, software companies must
deliver new features and bug fixes fast to maintain sustained user in-
volvement [1]. The appeal of delivering new features more quickly
has led many software projects to change their development pro-
cesses towards rapid release models [2]. Instead of working for
months or years on a major new release, companies adopt rapid
releases, i.e., releases that are produced in relatively short release
cycles that last a few days or weeks. The concept of rapid releases
(RRs) [3] is a prevalent industrial practice that is changing how
organizations develop and deliver software. Modern applications
like Google Chrome [4], Spotify [5] and the Facebook app operate
with a short release cycle of 2-6 weeks, while web-based software
like Netflix and the Facebook website push new updates 2-3 times
a day [6].

Previous work on RRs has analyzed the benefits and challenges
of adopting shorter release cycles. RRs are claimed to offer a reduced
time-to-market and faster user feedback [3]; releases become easier
to plan due to their smaller scope [7]; end users benefit because
they have faster access to functionality improvements and security
updates [2]. Despite these benefits, previous research in the context
of open source software (OSS) projects shows that RRs can neg-
atively affect certain aspects of software quality. RRs often come
at the expense of reduced software reliability [3, 8], accumulated
technical debt [9] and increased time pressure [10].

As RRs are increasingly being adopted in open-source and com-
mercial software [2], it is vital to understand their effects on the
quality of released software. It is also important to examine how
RRs relate to timing aspects in order to understand the cases in
which they are appropriate. Therefore, the overall goal of our re-
search is to explore the timing and quality characteristics of rapid
release cycles in an industrial setting. By exploring RRs in industry,
we can obtain valuable insights in what the urgent problems in
the field are, and what data and techniques are needed to address
them. It can also lead to a better understanding and generalization
of release practices. Such knowledge can provide researchers with
promising research directions that can help the industry today.

We performed an exploratory case study of rapid releases at
ING, a large Netherlands-based internationally operating bank that
develops software solutions in-house. We identified 433 teams out
of 611 software development teams at ING as rapid teams, i.e., teams
that release more often than others (release cycle time ≤ 3 weeks).
The remaining 178 teams with a release cycle > 3weeks are termed

https://doi.org/10.1145/3338906.3338978
https://doi.org/10.1145/3338906.3338978

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Elvan Kula, Ayushi Rastogi, Hennie Huijgens, Arie van Deursen, Georgios Gousios

Figure 1: Continuous Delivery Pipeline at ING

as non-rapid teams, i.e., teams that release less often than others.
The large scale and mixed environment of ING allowed us to make
a comparison between RRs and non-rapid releases (NRs) to explore
how release cycle lengths relate to time and quality aspects of
releases. We followed a mixed-methods approach in which we
conducted a survey with 461 software engineers and corroborated
their perceptions with 2 years of code quality data and 1 year of
release delay data. To the best of our knowledge, this is the first
exploratory study in the field of RRs. It is also the first study to
analyze RRs at a scale of over 600 teams, contrasting them with
NRs.

Developer answers to our survey indicate mixed perceptions of
the effect of RRs on code quality. On one hand, RRs are perceived
to simplify code reviewing and to improve the developers’ focus
on user-perceived quality. On the other hand, developers reported
the risk of making poor implementation choices due to deadline
pressure and a short-term focus. Our data analysis supports the
views on code quality improvements as indicated in a higher test
coverage, a lower number of coding issues and a lower average
complexity. Regarding release delays, our data analysis corroborates
the belief of developers that RRs are more often delayed than NRs.
However, RRs are correlated with a lower number of delay days
per release than NRs. A prominent factor that is perceived to cause
delay is related to dependencies, including infrastructural ones.

2 CONTEXT
ING is a largemultinational financial organizationwith about 54,000
employees and over 37 million customers in more than 40 countries
[11]. In 2011, ING decided to shorten their development cycles when
they planned to introduce Mijn ING, a personalized mobile appli-
cation for online banking. Before 2011, teams worked with release
cycles of 2 to 3 months between major version releases. However,
ING wanted to cut the cycles down to less than a month to stay
ahead of competition. In 2011, the bank introduced DevOps teams
to get developers and operators to collaborate in a more streamlined
manner. Currently, ING has 611 globally distributed DevOps teams
that work on various internal and external applications written in
Java, JavaScript, Python, C and C#.

2.1 Time-based Release Strategy
All teams at ING work with a time-based release strategy, in which
releases are planned for a specific date. In general, the teams de-
liver releases at regular week intervals. However, the release time
interval differs across teams and occasionally within a team. The
latter can appear in case of a release delay.

Defining RRs versus NRs. Although ING envisioned to cut
release cycles down to less than a month, not all teams have been
able to make this shift, possibly due to their application’s nature or
customers’ high security requirements. The development context
at ING is therefore mixed, consisting of teams that release at dif-
ferent speeds. Figure 2 presents an overview of the teams’ release
frequencies in the period from June 01, 2017 to June 01, 2018. The
distribution shown is not fixed as teams intend to keep reducing
their release cycle times in the future.

For this study we divide the teams at ING in a rapid group and
non-rapid group based on how fast they release relative to each
other. This distinction allows for a statistical comparison between
the two groups to explore if a shorter release cycle length influences
time and quality aspects of releases. We acknowledge that, within
a group, there might be differences among teams with different
release cycle lengths.

Classification threshold. As all teams at ING are expected
to follow the rapid release model, there is no specific culture of
RRs versus NRs that enabled us to make a differentiation between
the two (e.g., letting teams self-identify). We decided to use the
median release cycle time (3 weeks) as a point of reference since the
distribution shown in Figure 2 contains outliers. Using the median
as a point of reference, we classified teams as either rapid (release
duration of ≤ 3 weeks) or non-rapid (release duration > 3 weeks).
This way we identified 433 rapid teams (71%) and 178 non-rapid
teams (29%) at ING. In the same manner, we classified releases
as either rapid (time interval between release date and start of
development phase ≤ 3 weeks) or non-rapid otherwise. In general,
rapid teams push rapid releases. However, if a delay causes a cycle
length to exceed 3 weeks, a rapid team can push a non-rapid release.

Demographics of teams. Teams selected for analysis are sim-
ilar in size (both rapid and non-rapid: 95% CI of 5 to 9 members)
and number of respondents (both rapid and non-rapid: 95% CI of
1 to 2 respondents). Teams are also similar in their distribution of
experience in software development (both rapid and non-rapid: 95%
CI of 10 to 20 years). The projects are similar in size and domain.1

1A replication package containing survey questions and demographics data is publicly
available at https://figshare.com/s/4b99fd1b849e4728c6ef.

Figure 2: Distribution of release frequencies at ING: the black line
represents the cumulative percentage of the teams.

Releasing Fast and Slow: An Exploratory Case Study at ING ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

2.2 DevOps and Continuous Delivery
To make shorter release cycles practical, ING introduced the Con-
tinuous Delivery as a Service (CDaaS) project in 2015 to automate
the complete software delivery process. ING put a continuous deliv-
ery pipeline in place for all teams to enforce an agile development
process, and reduce their testing and deployment effort. Figure 1
depicts the pipeline. Jenkins, the CI server, is responsible for moni-
toring the quality of the source code with the static analysis tool
SonarQube.2 Vassallo et al. [12] performed a case study at ING about
the adoption of the delivery pipeline during development activities.

3 RESEARCH METHOD
The goal of this study is to explore the timing and quality character-
istics of rapid release cycles in an industrial setting.
Timing characteristics. Because RRs are driven by the idea of
reducing release cycle time, timing aspects are intrinsic to rapid
release cycles. By examining how often and why rapid releases are
delayed, we can deepen our understanding of the effectiveness of
rapid releases and better determine in which cases they are appro-
priate to use. Teams at ING work with a time-based release strategy,
in which releases are planned for a specific date. The only time
teams deviate from their fixed cycle length is in case of a release de-
lay. Here we want to find out how often projects deviate from their
regular cycle length and why. This leads to our first two research
questions:

RQ1:How often do rapid and non-rapid teams release software
on time?

RQ2: What factors are perceived to cause delay in rapid re-
leases?

Quality characteristics. It is important to examine the qual-
ity characteristics of rapid releases to get an insight into the way
shorter release cycles affect the internal code quality and user-
perceived quality of software in organizations. By exploring the
quality characteristics of RRs, we may better understand their long-
term consequences and inform the design of tools to help developers
manage them. We only focus on internal code quality as we do not
have access to data on external (user-perceived) quality at ING. We
define our last research question as follows:

RQ3: How do rapid release cycles affect code quality?

3.1 Study Design
We conducted an exploratory case study [13] of rapid releases at
ING with two units of analysis: the group of rapid teams and the
group of non-rapid teams. Our case study combines characteristics
from interpretive and positivist type case studies [13]. From an in-
terpretive perspective, our study explores RRs through participants’
interpretation of the development context at ING. From a positivist
perspective, we draw inferences from a sample of participants to a
stated population.

Data triangulation. To get a better understanding of RRs, we
addressed the research questions applying data triangulation [14].
We combined qualitative survey data with quantitative data on

2https://www.sonarqube.org/

release delays and code quality to present detailed insights. This
is also known as a mixed-methods approach [15, 16]. Since we
wanted to learn from a large number of software engineers and
diverse projects, we collected qualitative data using an online survey
in two phases [17]. In the first phase, we ran a pilot study with
two rapid and two non-rapid teams at ING. This allowed us to
refine the survey questions. In the second phase, we sent the final
survey to all teams at ING Netherlands (ING NL). In addition, we
analyzed quantitative data stored in ServiceNow and SonarQube
to examine the timing and quality characteristics of rapid releases,
respectively.3 We compared the perceptions of developers with
release delay data and code quality data for rapid and non-rapid
teams. An overview of our study set-up is shown in Figure 3. For
RQ2, we only analyzed survey data because quantitative (proxy)
data on release delay factors is not being collected by ING.

The quantitative data on release delays and code quality was
aggregated at the release level (unless stated otherwise), while
developers were asked to reflect on team performance in the survey.
To be consistent in aggregation, we used the same rapid/non-rapid
classification threshold of 3 weeks for both teams and releases.

3.2 Collecting Developers’ Perceptions
We sent the survey to members of both rapid teams and non-rapid
teams. To ensure that we collected data from a large number of
diverse projects, we selected the members of all teams at ING NL
as our population of candidate participants. In total, we contacted
1803 participants in more than 350 teams, each working on their
own application that is internal or external to ING. The participants
have been contacted through projects’ mailing lists.

Survey design. The survey was organized into five sections
for research related questions, plus a section aimed at gathering
demographic information of the respondents (i.e., role within the
team, total years of work experience and total years at ING). The
five sections were composed of open-ended questions, intermixed
with multiple choice or Likert scale questions. To address RQ1, we
asked respondents to fill in a compulsory multiple choice question
on how often their team releases on time. To get deeper insights
into how rapid versus non-rapid teams deal with release delays, we
included an open-ended question asking respondents what their
teams do when a release is delayed. For RQ2, we provided respon-
dents with an open-ended question to gather unbounded and de-
tailed responses on delay factors. For RQ3, we provided respondents
with a set of two compulsory open-ended questions, asking respon-
dents how they perceive the impact of rapid release cycles on their
project’s internal code quality, and whether they think that rapid
release cycles result in accumulated technical debt. We added a set
of four optional 4-level Likert scale questions (each addressing the

3https://www.servicenow.com/

Figure 3: Overview of our mixed-methods study set-up

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Elvan Kula, Ayushi Rastogi, Hennie Huijgens, Arie van Deursen, Georgios Gousios

impact of RRs on testing debt, design debt, documentation debt and
coding debt). In addition, we included a mandatory multiple choice
question about the respondent team’s release frequency and a few
optional questions on how they perform quality monitoring.

Survey operation. The survey was uploaded onto Collector, a
survey management platform internal to ING NL. The candidate
participants were invited using an invitation mail featuring the
purpose of the survey and how its results can enable us to gain new
knowledge of rapid releases. For the pilot run, we randomly selected
two rapid and two non-rapid teams. We e-mailed the 24 employees
in the four teams and received 7 responses (29% response rate). For
the final survey, we e-mailed 1803 team members and obtained 461
responses (26% response rate). Respondents had a total of three
weeks to participate in the survey. We sent two reminders to those
who did not participate yet at the beginning of the second and third
week. The survey ran from June 19 to July 10, 2018.

Demographics of respondents. Out of the 461 responses we
received, 296 respondents were from rapid teams (64%) and the
remaining 165 respondents were from non-rapid teams (36%) . A
majority (70%) of our respondents self-identified as software engi-
neer, while the rest identified themselves as managers (6%), analysts
(23%) or other (1%) role at the IT department of ING. Most partic-
ipants (77%) reported to have more than ten years of software
development experience and more than five years of experience at
ING (59%). For RQ3, we filtered out 259 respondents who did not
identify as a software engineer in a rapid team.

Survey analysis.We applied manual coding [18] to summarize
the results of the four open-ended questions during two integration
rounds. We coded by statement and codes continued to emerge
till the end of the process. In the first round, the first and the last
author used an online spreadsheet to code a 10% sample (40mutually
exclusive responses) each. They assigned at least one and up to three
codes to each response. Next, they met in person to integrate the
obtained codes, meaning that the codes were combined by merging
similar ones, and generalizing or specializing the codes if needed.
When new codes emerged, they were integrated in the set of codes.
The first author then applied the integrated codes to 90% of the
answers and the second author did this for the remaining 10% of the
responses. In the second round, the first two authors had another
integration meeting which resulted into the final set of codes. The
final set contained 18% more codes than the set resulting from the
first integration round.

3.3 Collecting Software Metrics
To analyze the quality of software written by non-rapid teams in
comparison with rapid teams, we extracted the SonarQube mea-
surements of releases that were shipped by teams that actively use
SonarQube as part of the CDaaS pipeline. Although all teams at
ING have access to SonarQube, 190 of them run the tool each time
they ship a new release. We analyzed the releases shipped by these
190 teams in the period from July 01, 2016 to July 01, 2018. In total,
we studied the major releases of 3048 software projects. 67% of
these releases were developed following a rapid release cycle (≤ 3
weeks) with a median value of 2 weeks between the major releases.
The remaining 33% of the releases were developed following a non-
rapid release cycle (> 3 weeks) with a median value of 6 weeks
between the major releases.

Processing software metrics. First, we checked the releases
in SonarQube, and extracted the start dates of their development
phase and their release dates. Then, we classified the releases as
non-rapid or rapid based on the time interval between their release
date and start date of the development phase (using 3 weeks as
threshold). We did not consider the time period between the release
dates of two consecutive releases since the development of a release
can start before the release of the prior one. Although SonarQube
offers a wide range of metrics, we only considered the subset of
metrics that are analyzed by all teams at ING. For each release,
we extracted the metrics that all teams at ING measure to assess
their coding performance. Out of these metrics, code churn is used
to assess the level of coding activity within a code base, and the
remaining metrics are seen as indicators for coding quality:

(1) Coding Standard Violations: the number of times the source
code violates a coding rule. A large number of open issues can
indicate low-quality code and coding debt in the system [19].
As part of this class of metrics, we looked more specifically
into the Cyclomatic Complexity [20] of all files contained in
a release.

(2) Branch Coverage: the average coverage by tests of branches
in all files contained in a release. A low branch coverage can
indicate testing debt in the system [21].

(3) Comment Density: the percentage of comment lines in the
source code. A low comment density can be representative
of documentation debt in the system [21].

(4) Code Churn: the number of changed lines of code between
two consecutive releases. Since in RRs code is released in
smaller batches, it is expected that the absolute code churn
is lower in rapid teams but it is not clear how the normalized
code churn is influenced.

As SonarQube does not account for differences in project size,
we normalized the metrics by dividing them by Source Lines of
Code (SLOC): the total number of lines of source code contained
in a release. Since code churn is calculated over the time between
releases and this differs among teams, we normalized code churn by
dividing it by the time interval between the release date and start
date of the development phase. The code complexity and lines of
code were used to examine if differences observed in the software
quality are potentially caused by changes in the source code’s size
or complexity. Finally, we performed a statistical comparison of the
metrics between the group of RRs and the group of NRs.

3.4 Collecting Release Delay Data
To compare the occurrence and duration of delays in releases of
rapid and non-rapid teams, we extracted log data from ServiceNow,
a backlog management tool used by most teams at ING NL. We
received access to the log data of 102 teams for releases shipped
between October 01, 2017 and October 01, 2018. First, we checked
the releases of each team in the system, and extracted their planned
release dates and actual release dates. The releases were classified
as either rapid or non-rapid based on the time interval between
their planned release date and that of the previous release. We
acknowledge that the development of a release might start before
the planned release date of the previous release. This should not
affect our distinction between releases as they are classified based

Releasing Fast and Slow: An Exploratory Case Study at ING ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Figure 4: Percentage distribution of rapid and non-rapid teams
based on the percentage of times they release software on time

on whether they were planned to be rapid or non-rapid. For each
release, we extracted the duration of the delay as the difference
in days between the planned release date and actual release date.
If a release was pushed to production before or on the planned
release date, it was considered to be on time (zero delay). Finally,
we aggregated the delay measurements to perform a statistical
comparison of delays between rapid teams and non-rapid teams.

4 RESULTS
This section presents results on timing and quality characteristics of
rapid releases derived from survey responses, release delay data and
code quality data for rapid and non-rapid teams. Example quotes
from the survey are marked with a [rX] notation, in which X refers
to the corresponding respondent’s identification number. The codes
resulting from our manual coding process are underlined.

RQ1: How often do rapid and non-rapid teams
release software on time?
For this research question we looked into perceived delay data
from survey responses and actual delay data from ServiceNow. The
results are summarized in Figure 4. This figure shows a percentage
distribution based on the percentage of times rapid and non-rapid
teams perceive to and actually release software on time. Both the
survey responses and delay data are aggregated at the team level.

A. Developers’ Perceptions
For this survey question 85% of teams had 1 respondent, 9% had
2 respondents (both responses accepted) and remaining had 3 re-
spondents (responses aggregated using majority vote). Using the
Mann-Whitney U test [22], we found that the differences observed
in the perceived percentage of timely releases for rapid and non-
rapid teams are statistically significant at a confidence level of 95%
(p-value = 0.003). We measured an effect size (Cliff’s delta) of 0.925,
which corresponds to a large effect.

Figure 4 shows that a majority of respondents from both non-
rapid (60%) and rapid (76%) teams believe that they release software
on time less than half of the time. The figure also shows that rapid
teams believe to be more delayed than their non-rapid counterparts.
On one extreme, 8% of rapid teams perceive to be on time 75% to
100% of the time. The percentage doubles to 16% for non-rapid
teams.

Further analysis of the survey responses revealed that a majority
of the rapid teams that perceive to be on track 75% to 100% of the

time develop web applications (54%) and desktop applications (18%).
The rapid teams that perceive to be less than 25% of the time on
track develop mobile applications (68%) and APIs (19%).

B. Release Delay Measurements
According to the Mann-Whitney U test, the differences observed
in the actual percentage of timely releases for rapid and non-rapid
teams are statistically significant at a confidence level of 95% (p-
value < 0.001). We measured an effect size (Cliff’s delta) of 0.833,
which corresponds to a large effect.

Figure 4 shows that a majority of both rapid and non-rapid
teams release software more often on time than our respondents
believe. We could not find any rapid or non-rapid team that releases
software on time only 0 - 25% of the time. The data corroborates
the perception of respondents that rapid teams are always more
delayed than their non-rapid counterparts. One extreme is that
19% of rapid teams are on time 75% to 100% of the time, while the
percentage increases to 32% for non-rapid teams.

Delay duration. Although rapid teams are more often delayed
than non-rapid teams, analysis of the delays at release level shows
that delays in RRs take a median time of 6 days, while taking 15
days (median) in NRs. According to the Mann-Whitney U test, this
difference is statistically significant at a confidence level of 95%
with a large effect size of 0.695.

Application domains. Further analysis of the data showed a
similar trend as observed in the survey responses. A majority of
the rapid teams that are less than 50% of the time on track develop
mobile applications (47%, average delay duration: 7 days) and APIs
(12%, average delay duration: 5 days). Using the Mann-Whitney U
test, we did not find any significant difference in project domains
for the rapid teams that are on track more than 75% of the time.

How do teams address release delays? In the responses to
the open-ended question on what teams do when a release gets
delayed, we distinguished two main approaches that both rapid and
non-rapid teams undertake. Teams report to address delays through
rescheduling, i.e., the action of postponing a release to a new date,
and re-planning or re-prioritizing the scope of the delivery. Both
groups also report to have the option to release as soon as possible,
i.e., in the time span of a few days. Rapid teams mentioned both
approaches equally often, while a majority (76%) of non-rapid teams
report to reschedule. This suggests that rapid teams are more flexi-
ble regarding release delays.

Rapid teams perceive to be, and in reality are, more com-
monly delayed than their non-rapid counterparts.

RQ2: What factors are perceived to cause delay
in rapid releases?
For this research question, we only analyzed survey responses,
because quantitative data on release delay factors is not being
collected by ING. Survey respondents mentioned several factors
that they think introduce delays in releases. A list of these factors
arranged in decreasing order of their occurrence in responses of
rapid teams is shown in Figure 5.

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Elvan Kula, Ayushi Rastogi, Hennie Huijgens, Arie van Deursen, Georgios Gousios

Figure 5 shows that dependencies and infrastructure (which can
be seen as a specific type of dependency) are the most prominent
factors that are perceived to cause delay in rapid teams. Other
factors which were listed in at least 10% of responses are testing (in
general and for security), following mandatory procedures (such
as for quality assurance) prior to every release, fixing bugs, and
scheduling the release, including planning effort and resources.
Non-rapid teams experience similar issues. Similar to rapid teams,
non-rapid teams report to be largely influenced by dependencies.
The other factors which were considered important by at least 10%
of the respondents are scheduling, procedure, and security testing.

Further analysis of the most prominent factor perceived to delay
rapid and non-rapid teams (dependency) explained the sources of
dependency in the organization. Developers, in their open-ended re-
sponses, attributed two types of dependencies to cause delay in their
releases. At a technical level, developers have to deal with cross-
project dependencies. Teams at ING work with project-specific
repositories and share codebases across teams within one applica-
tion. At a workflow level, developers mention to be hindered by
task dependencies. Inconsistent schedules and unaligned priorities
are perceived to cause delays in dependent teams. Many develop-
ers seem to struggle with estimating the impact of both types of
dependencies in the release planning.

Another factor which is perceived to prominently affect rapid
and non-rapid teams is security testing. For rapid teams, developers
report that security tests are almost always delayed because of an
unstable acceptance environment or missing release notes. They
further add that any software release needs to pass the required
security penetration test and secure code review, which are centrally
performed by the CIO Security department at ING. Respondents
report that they often have to delay releases because of “delayed
penetration tests" [r66], “unavailability of security teams" [r133] and
“acting upon their findings" [r86].

Figure 5: Factors perceived to cause delays in rapid and non-rapid
teams

Rapid teams also report delays related to infrastructure and
testing (in general). These factors do not feature in the top men-
tioned factors influencing non-rapid teams. Regarding infrastruc-
ture, respondents mention that issues in infrastructure are related
to the failure of tools responsible for automation (such as Jenkins
and Nolio) and sluggishness in the pipeline caused by network or
proxy issues. Respondent [r168] states that “Without the autonomy
and tools to fix itself, we have to report these issues to the teams of
CDaas and wait for them to be solved". Regarding testing, developers
mention that the unavailability or instability of the test environ-
ment induces delay in releasing software. Respondent [r11] states
that “In that case we want to be sure it was the environment and not
the code we wish to release. Postponing is then a viable option”.

Further analysis of the survey responses showed that the rapidly
released mobile applications and APIs that are least often on time
(found in RQ1) are hindered by dependencies and testing. Many
mobile app developers report to experience delay due to depen-
dencies on a variety of mobile technologies and limited testing
support for mobile-specific test scenarios. API developers report
to be delayed by dependencies in back-end services and expensive
integration testing.

Dependencies, especially in infrastructure, and testing are
the top mentioned delay factors in rapid releases.

RQ3: How do rapid release cycles affect code
quality?
For this research question, we considered 202 survey responses from
developers in rapid teams. We removed 165 non-rapid respondents
next to 94 rapid respondents who did not identify as a developer at
ING.

A. Developers’ Perceptions
Developers have mixed opinions on how RRs affect code quality.
A distribution of the effect of RRs (improve, degrade, no effect) on
different factors related to code as perceived by developers is shown
in Figure 6. It shows responses suggesting improvements in quality
in green, degradation in quality in red and no effect in grey.

Quality improvement. A majority of developers perceive that
the small changes in RRs make the code easier to review, positively
impacting the refactoring effort (e.g., “It gets easier to review the code
and address technical debt" [r16]). Developers also report that the
small deliverables simplify the process of integrating and merging
code changes, and they lower the impact of errors in development.
A few developers mention that RRs motivate them to write modular
and understandable code.

A large number of developers mention the benefits of rapid
feedback in RRs. Feedback from issue trackers and the end user
allows teams to continuously refactor and improve their code qual-
ity based on unforeseen errors and incidents in production. Rapid
user feedback is perceived to lead to a greater focus of developers
on customer value and software reliability (e.g., “[RRs] give more
insight in bugs and issues after releasing. [They] enable us to respond
more quickly to user requirements" [r232], “We can better monitor

Releasing Fast and Slow: An Exploratory Case Study at ING ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Figure 6: Developer perception of the impact of rapid releases on
code quality aspects

the feedback of the customers which increased [with RRs]." [r130]).
This enables teams to deliver customer value at a faster and more
steady pace (e.g., “[With RRs] we can provide more value more often
to end users." [r65], “Features are delivered at a more steady pace"
[r16]).

Developers perceive the smaller changes and rapid feedback
in rapid releases to improve code quality.

Quality degradation.Many developers report to experience an
increased deadline pressure in RRs, which can negatively affect the
code quality. Developers explain to feel more pressure in shorter
releases as these are often viewed as “a push for more features" [143].
They believe that this leads to a lack of focus on quality and an
increase in workarounds (e.g., “Readiness of a feature becomes more
important than consistent code." [r26]). A few developers report
to make poor implementation choices under pressure (e.g., “In the
hurry of a short release it is easy to make mistakes and less optimal
choices" [r320]).

Technical debt. We checked whether the respondents monitor
technical debt in their releases through a multiple choice question
in the survey. 168 out of 202 developers of rapid teams reported
to monitor the debt in their project. For our analysis, we only
considered responses from these developers and we focused on
four common types of debt as identified in the work of Li et al. [19]:
coding debt, design debt, testing debt and documentation debt. An
overview of the responses to the Likert scale questions is shown
in Figure 7. According to a majority of the developers, RRs do
not result in accumulated debt of any type. Since the developers’
explanations on coding debt were similar to the factors mentioned
in Figure 6, we will now focus on other types of debt:

Design debt.Many developers report that the short term focus of
RRs makes it easier to lose sight of the big picture, possibly resulting
in design debt in the long-run. Especially in case of cross-product
collaboration, RRs do not leave enough time to discuss design issues
(e.g., “We are nine teams working together on the same application.
Due to time constraints design is often not discussed between the
teams." [r147])

Testing debt. A majority of developers mention RRs to have
both positive and negative effects on their testing effort. RRs are
perceived to result in a more continuous testing process since teams
update their test suite in every sprint. However, due to their shorter
time span, developers report to focus their testing effort in RRs on
new features and high-risk features. This focus is found to “allow
more complete testing of new features" [r184] and to “make it easier
to determine what needs to be tested" [r186]. Developers mention to
spend less time on creating regression tests in RRs.

Documentation debt. A majority of the developers do not per-
ceive a decrease in the amount of documentation in RRs. However,
developers report that the short-term focus in RRs reduces the
quality of documentation. When there is pressure to quickly de-
liver new functionality, documentation quality receives the least
priority (e.g., “The need for high quality documentation is low in the
short-term" [155], “Documentation is the first which will be dropped
in case of time pressure" [r84]). Developers mention to cut corners
by using self-documenting code, and by skipping high-level doc-
umentation regarding the global functionality and integration of
software components.

Developers perceive the deadline pressure in rapid releases
to reduce code quality. The short-term focus in rapid re-
leases may result in design debt in the long-run.

B. Software Quality Measurements
To gain a more detailed insight into the code quality of teams, we
performed a comparative analysis of SonarQube measurements for
RRs and NRs. To account for differences in project size, we normal-
ized all metrics by SLOC. The Shapiro-Wilk test [23] shows that
the data is not normally distributed. Therefore, we use the non-
parametric statistical Mann-Whitney U test [22] to check whether
the differences observed between NRs and RRs are statistically sig-
nificant. To adjust for multiple comparisons we use the Bonferroni-
corrected significance level [24] by dividing the conventional sig-
nificance level of 0.05 by 5 (the total number of tests), giving a
corrected significance level of 0.01. This means that the p-value
needs to be < 0.01 to reject the null hypothesis. The effect size
is measured as Cliff’s delta [25]. The results of our analysis are
summarized in Table 1, and presented below:

Figure 7: The impact of rapid release cycles on different types of
technical debt

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Elvan Kula, Ayushi Rastogi, Hennie Huijgens, Arie van Deursen, Georgios Gousios

Metric
Mean Median P-value 95% CI Effect Size

RR NR RR NR RR NR (Cliff’s delta)

Coding Violations Density∗ 0.03 0.05 0.02 0.03 0.00234 [0.02, 0.04] [0.03, 0.06] -0.595
Cyclomatic Complexity∗ 0.14 0.17 0.15 0.16 0.00418 [0.13, 0.16] [0.14, 0.20] -0.336
Branch Coverage∗ 57.51 43.02 68.40 49.15 0.00016 [48.90, 76.70] [27.40, 59.00] 0.286
Comment Density 10.13 11.07 7.20 8.30 0.04533 [4.79, 12.50] [5.11, 15.00] -0.109
Code Churn∗ 0.05 0.03 0.03 0.02 0.00782 [0.03, 0.07] [0.02, 0.05] 0.263

SLOC 67066 83983 7447 9286 0.09045 [63600, 98900] [55600, 78600] -0.181

Table 1: Effects of RRs on software metrics. SLOC is used as a normalization factor. P-values are based on the Mann-Whitney
U Test. ∗ indicates statistical significance (p-value < 0.01, Bonferroni-corrected).

(1) The cyclomatic complexity and coding issues are signif-
icantly lower in software built with RRs (medium and
large effect). This result corresponds with the perceptions
of developers on coding debt. Developers do not perceive
an increase in coding debt, and they report to find it easier
to review and refactor code in RRs. This makes it likely for
them to write less complex code and fix issues more quickly.

(2) The branch coverage is significantly higher in software
built with RRs (small effect). This result corresponds with
the perceptions of developers on the testing effort. Develop-
ers report the test process in RRs to become more continuous
and to allow for more complete testing of new features. As a
consequence, RRs are likely to exhibit a higher test coverage.

(3) The code churn is significantly higher in software built
with RRs (small effect). This result indicates that there is a
higher coding activity in rapid teams than in non-rapid teams.
As developers did not mention code churn in their responses,
we cannot compare this result with their perceptions. It is a
possibility that developers are not aware of a higher coding
activity in RRs.

(4) We did not find a significant difference in the comment
density of RRs and NRs.While not statistically significant,
a lack of difference is consistent with the perceptions of
developers on documentation debt. Developers perceive that
RRs have an impact on the quality of documentation, but
not on the amount (density) of documentation.

5 DISCUSSION
We now discuss our main findings and consider implications for
practice. We also discuss several future research directions.

5.1 Main Findings
Delay factors in rapid releases. We found that testing and de-
pendencies are the top mentioned delay factors in rapid teams. In
addition, RRs in API and mobile app development are more often
delayed than other application domains. These findings suggest
that project type, or perhaps certain inherent characteristics in
different project types, are a delay factor in RRs. A study of project
properties that delay RRs could help the field determine when RRs
are appropriate to use. Which project types and organizations fit
well with RRs? Initial work in this direction has been carried out
by Kerzazi & Khomh [26] and Bellomo et al. [27].

Total release delay and customer value. Our results show
that RRs are more commonly delayed than NRs. However, it is not
clear what this means for the project as a whole, given that NRs are

correlated with a longer delay duration. How do RRs impact the
total delay of a project? Future work should examine the number
of delay days over the duration of a project. How do release delays
evolve throughout different phases of a project? This also raises
the question whether RRs (despite those delays) help companies to
deliver more customer value in a timely manner. Our respondents
report that RRs enable them to deliver customer value at a faster
and more steady pace, which suggests that over time rapid teams
could deliver more customer value than non-rapid teams. Future
research in this direction could give us a better insight into the
effectiveness of RRs in terms of customer experience.

The balance game: security versus rapid delivery.Many of
our respondents perceive security testing to induce delay in rapid
teams. This suggests that organizations make a trade-off between
rapid delivery and security. A financial organization like ING, with
security critical systems, may choose to release less frequently to in-
crease time available for security testing. As one of the respondents
puts it “It is a balance game between agility and security. Within
ING the scale balances heavily in favor of security, thereby effec-
tively killing off agility." [r21] Further analysis is needed to explore
the tension between rapid deployment of new software features
and the need for sufficient security testing. To what extent does
security testing affect the lead time of software releases? In this
context, Clark et al. [28] studied security vulnerabilities in Firefox
and showed that RRs do not result in higher vulnerability rates. Fur-
ther research in this direction is needed to clear up the interaction
between both factors.

Nevertheless, the time span of a release cycle limits the amount
of security testing that can be performed. Therefore, further re-
search should also focus on agile security to work towards the
automation of security testing, and the design of security measures
that are able to adapt to the changes in a rapid development environ-
ment. Newmethods for rapid security verification and vulnerability
identification could help organizations to keep pace with RRs.

Dependency management. We found that the timing of both
RRs and NRs is perceived to be influenced by dependencies in
the ecosystem of the organization. Our respondents report the
difficulty of assessing the impact of dependencies. There is a need
for more insight into the characteristics and evolution of these
dependencies. How can we quantify their combined effect on the
overall ecosystem? This problem calls for further research into
streamlining dependency management. Decan et al. [29, 30] studied
how dependency networks tend to grow over time, both in size
and package updates, and to what extent ecosystems suffer from

Releasing Fast and Slow: An Exploratory Case Study at ING ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

issues related to package dependency updates. Hedjedrup et al. [31]
proposed the construction of a fine-grained dependency network
extended with call graph information. This would enable developers
to perform change impact analysis at the ecosystem level and on a
version basis.

Code quality. We found that RRs can be beneficial in terms of
code reviewing and user-perceived quality, even in large organi-
zations working with hundreds of software development teams.
This complements the findings reported by [2, 32, 33] on the ease
of quality monitoring in RRs. Our quantitative data analysis shows
that software built with RRs tends to have a higher branch coverage,
a lower number of coding issues and a lower average complexity.
Previous research [34] reported improvements of test coverage at
unit-test level but did not look into other code quality metrics. It
is an interesting opportunity for future work to analyze how RRs
impact code quality metrics in other types of organizations and
projects.

Challenges related to code aspects in RRs concern design debt
and the risk of poor implementation choices due to deadline pres-
sure and a short-term focus. This is in line with previous work
[9, 10] that showed that pressure to deliver features for an ap-
proaching release date can introduce code smells. A study of factors
that cause deadline pressure in rapid teams would be beneficial. It
may be that projects that are under-resourced or under more time
pressure are more likely to adopt RRs, instead of RRs leading to
more time pressure. The next step would be to identify practices
and methods that reduce the negative impact of the short-term
focus and pressure in RRs.

5.2 Implications for Practitioners
Here we present a set of areas that call for further attention from
organizations that work with rapid releases.

Managing code quality. In our study, we observed that a mi-
nority of rapid teams claim not to experience the negative conse-
quences of RRs on code quality. We noticed that most self-reported
‘good’ teams are doing regular code reviews and dedicate 25% of the
time per sprint on refactoring. Teams that experience the downsides
of RRs mention to spend less than 15% of the time on refactoring
or to use ‘clean-up’ cycles (i.e., cycles dedicated to refactoring). Al-
though further analysis is required, we recommend organizations
to integrate regular (peer) code reviews in their teams’ workflows
and to apply continuous refactoring for at least 15% of the time per
sprint.

Release planning. Regarding delays, our respondents express
the need for more insight on improving software effort estimation
and streamlining dependencies. Although software effort estima-
tion is well studied in research (even in RRs: [35, 36]), issues re-
lating to effort estimation continue to exist in industry. This calls
for a better promotion of research efforts on release planning and
predictable software delivery. Organizations should invest more
in workshops and training courses on release planning for their
engineers. We also recommend organizations to apply recent ap-
proaches, such as automated testing and Infrastructure as Code, to
the problem of delays in RRs.

Releasing fast and responsibly.Developers report to feelmore
deadline pressure in RRs, which can result in poor implementation
choices and an increase in workarounds. This is also reported by

previous work [2, 10]. Organizations should not view RRs as a push
for features. A sole focus on functionality will harm their code qual-
ity and potentially slow down releases in the long run. We believe
that it is less effective to motivate organizations to slow down and
produce better code quality than helping developers to release fast
while breaking less. Future work should attempt to enhance the
ways that software development teams communicate, coordinate
and assess coding performance to enable organizations to release
fast while maintaining high code quality.

5.3 Future Work
Our work reveals several future research directions.

Fine-grained analysis of release cycle length. An interest-
ing opportunity for future work is to explore whether our findings
still hold for more fine-grained groupings of weekly release inter-
vals. Another promising opportunity is to explore possible con-
founding factors. Although we explored the role of several factors
that are likely to affect release cycle time (see Section 2.1), further
analysis is required to explore confounding factors. Participant
observations suggest that customers’ high security requirements
might play a role. Future work could examine these factors and
eliminate them through statistical controls (e.g., through a form of
multiple regression).

Long-term impact of RRs. An interesting opportunity for fu-
ture work is to explore the long-term effect of RRs. By analyzing
longitudinal data of quality measurements before and after teams
switched to RRs, it can be measured how metrics relate to release
cycle length over time. What is the long-term effect of RRs on
code quality and user-perceived quality of releases? How do issues
related to design debt and time pressure develop in the long run?

Feedback-driven development. Our results show that the ra-
pid feedback in RRs is perceived to improve the focus of developers
on the quality of software. Feedback obtained from end users, code
reviews and static analysis can be used to guide teams to focus on
the most valuable features, and to enable automated techniques
to support various development tasks, including log monitoring,
and various forms of testing. Such techniques can be used to fur-
ther reduce the cycle length. An exploration of these opportunities
would help organizations to improve the quality of their software.
An extension of the data with runtime information (i.e., perfor-
mance engineering) and live user feedback that is integrated into
the integrated development environment could be beneficial.

6 LIMITATIONS
Internal validity.One factor that can affect the qualitative analysis
is the bias induced by the involvement of the authors with the
studied organization. The first author interned at ING at the time of
this studywhile the third author works at ING. To counter the biases
which might have been introduced by the first and third authors,
the last author (from Delft University of Technology) helped in
designing survey questions. The observations and interpretation of
the findings were cross-validated by the other two authors. Another
risk of the coding process is the loss of accuracy of the original
response due to an increased level of categorization. To mitigate
this risk, we allowed multiple codes to be assigned to the same
answer.

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Elvan Kula, Ayushi Rastogi, Hennie Huijgens, Arie van Deursen, Georgios Gousios

In our survey design we phrased and ordered the questions
in a sequential order of activities to avoid leading questions and
order effects. Social desirability bias [37] may have influenced the
responses. To mitigate this risk, we made the survey anonymous
and let the participants know that the responses would be evaluated
statistically.

We cannot account for confounding variables that might have
affected our findings. Even though all teams at ING are encouraged
to release faster, not all teams have been able to reduce their re-
lease cycle length to 3 weeks or less. This suggests that there are
confounding factors that differentiate rapid and non-rapid teams.
Examples of potential factors are project difficulty and security
requirements. It is also a possibility that rapid teams at ING work
on software components that are more easy to release rapidly. This
might have led to too optimistic results for rapid teams.

External validity. As our study only considers one organiza-
tion, external threats are concerned with our ability to generalize
our results. Although the results are obtained from a large, global
organization and we control for variations using a large number of
participants and projects spanning a time period of two years, we
cannot generalize our conclusions to other organizations. Replica-
tion of this work in other organizations is required to reach more
general conclusions. We believe that further in-depth explorations
(e.g., interviews) and multiple case studies are required before estab-
lishing a general theory of RRs. Our findings are likely applicable
to organizations that are similar to ING in scale and security level.
We cannot account for the impact of the large scale of ING on our
results. Further research is required to explore how the scale of
organizations and projects relates to the findings. Our findings in-
dicate a trade-off between rapid delivery and software security. In
a financial organization like ING there is no tolerance for failure in
some of their business-critical systems. This may have influenced
our results, making our findings likely applicable to organizations
with similar business- or safety-critical systems. Replication of this
study in organizations of different scale, type and security level is
therefore required.

7 RELATEDWORK
Early studies on RRs focused on the motivations behind their adop-
tion. Begel and Nagappan [38] found that the main motivations
relate to easier planning, more rapid feedback and a greater focus
on software quality. Our study and others [2, 32–34, 39, 40] found
similar benefits. We also found that RRs are perceived to enable a
faster and more steady delivery of customer value.

Recent efforts have examined the impact of switching from NRs
to RRs on the time and quality aspects of the development process:

Time aspects. Costa et al. [8] found that issues are fixed faster
in RRs but, surprisingly, RRs take a median of 54% longer to deliver
fixed issues. This may be because NRs prioritize the integration
of backlog issues, while RRs prioritize issues that were addressed
during the current cycle [41]. Kerzazi and Khomh [26] studied the
factors impacting the lead time of software releases and found
that testing is the most time consuming activity along with socio-
technical coordination. Our study complements prior work by ex-
ploring how often rapid teams release software on time and what
the perceived causes of delay are. In line with [26], we found that
testing is one of the top mentioned delay factors in RRs.

The strict release dates in RRs are claimed to increase the time
pressure under which developers work. Rubin and Rinard [10]
found that most developers in high-tech companies work under
significant pressure to deliver new functionality quickly. Our study
corroborates the finding that developers experience increased dead-
line pressure in RRs.

Quality aspects. Tufano et al. [9] found that deadline pressure
for an approaching release date is one of the main causes for code
smell introduction. Industrial case studies of Codabux andWilliams
[42], and Torkar et al. [43], showed that a rapid development speed
is perceived to increase technical debt. We found that the deadline
pressure in RRs is perceived to result in a lack of focus and an
increase in workarounds. Our study complements prior work by
analyzing the impact of RRs on certain code quality metrics and
different types of debt.

In the OSS context, multiple studies [2, 32, 33, 39] have shown
that RRs ease the monitoring of quality and motivate developers to
deliver quality software. Khomh et al. [3, 44] found that less bugs are
fixed in RRs, proportionally. Mäntylä et al. [2] showed that in RRs
testing has a narrower scope that enables a deeper investigation of
features and regressions with the highest risk. This was also found
by our study and others [34, 39]. [34, 45] showed that testers of
RRs lack time to perform time-intensive performance tests. In line
with previous work, our respondents reported to spend less time on
creating regression tests. Our study complements aforementioned
studies by comparing the branch coverage of RRs to that of NRs.

Overall, studies that focus on RRs as main study target are ex-
planatory and largely conducted in the context of OSS projects.
In this paper, we present new knowledge by performing an ex-
ploratory case study of RRs in a large software-driven organization.

8 CONCLUSIONS
The goal of our paper is to deepen our understanding of the prac-
tices, effectiveness, and challenges surrounding rapid software re-
leases in industry. To that end, we conducted an industrial case
study, addressing timing and quality characteristics of rapid re-
leases. Our contributions include the reusable setup of our study
(Section 3) and the results of our study (Section 4).

The key findings of this study are: (1) Rapid teams are more often
delayed than their non-rapid counterparts. However, rapid releases
are correlated with a lower number of delay days per release. (2)
Dependencies, especially in infrastructure, and testing are the top
mentioned delay factors in rapid releases. (3) Rapid releases are
perceived to make it easier to review code and to strengthen the
developers’ focus on user-perceived quality. The code quality data
shows that rapid releases are correlated with a higher test coverage,
a lower average complexity and a lower number of coding standard
violations. (4) Developers perceive rapid releases to negatively im-
pact implementation choices and design due to deadline pressure
and a short-term focus.

Based on our findings we identified challenging areas calling
for further attention, related to the applicability of rapid releases,
the role of security concerns, the opportunities for rapid feedback,
and management of code quality and dependencies. Progress in
these areas is crucial in order to better realize the benefits of rapid
releases in large software-driven organizations.

Releasing Fast and Slow: An Exploratory Case Study at ING ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

REFERENCES
[1] Chandrasekar Subramaniam, Ravi Sen, and Matthew L Nelson. Determinants

of open source software project success: A longitudinal study. Decision Support
Systems, 46(2):576–585, 2009.

[2] Mika VMäntylä, BramAdams, Foutse Khomh, Emelie Engström, and Kai Petersen.
On rapid releases and software testing: a case study and a semi-systematic
literature review. Empirical Software Engineering, 20(5):1384–1425, 2015.

[3] Foutse Khomh, Tejinder Dhaliwal, Ying Zou, and Bram Adams. Do faster re-
leases improve software quality?: an empirical case study of mozilla firefox. In
Proceedings of the 9th IEEE Working Conference on Mining Software Repositories,
pages 179–188. IEEE Press, 2012.

[4] Bram Adams and Shane McIntosh. Modern release engineering in a nutshell–
why researchers should care. In Software Analysis, Evolution, and Reengineering
(SANER), 2016 IEEE 23rd International Conference on, volume 5, pages 78–90. IEEE,
2016.

[5] H. Kniberg. Spotify engineering culture. Available at https:// labs.spotify.com/
2014/03/27/ spotify-engineering-culture-part-1, 2014.

[6] C Rossi. Moving to mobile: The challenges of moving fromweb to mobile releases.
Keynote at RELENG, 2014.

[7] Kent Beck and Erich Gamma. Extreme programming explained: embrace change.
addison-wesley professional, 2000.

[8] Daniel Alencar da Costa, Shane McIntosh, Uirá Kulesza, and Ahmed E Hassan.
The impact of switching to a rapid release cycle on the integration delay of
addressed issues-an empirical study of the mozilla firefox project. In Mining
Software Repositories (MSR), 2016 IEEE/ACM 13th Working Conference on, pages
374–385. IEEE, 2016.

[9] Michele Tufano, Fabio Palomba, Gabriele Bavota, Rocco Oliveto, Massimiliano
Di Penta, Andrea De Lucia, and Denys Poshyvanyk. When and why your code
starts to smell bad. In Proceedings of the 37th International Conference on Software
Engineering-Volume 1, pages 403–414. IEEE Press, 2015.

[10] Julia Rubin and Martin Rinard. The challenges of staying together while moving
fast: An exploratory study. In Software Engineering (ICSE), 2016 IEEE/ACM 38th
International Conference on, pages 982–993. IEEE, 2016.

[11] ING. 2017 Annual ING Group N.V. Available at https://www.ing.com/About-
us/Annual-reporting-suite/Annual-Report/2017-Annual-Report-Empowering-
people.htm, 2018.

[12] Carmine Vassallo, Fiorella Zampetti, Daniele Romano, Moritz Beller, Annibale
Panichella, Massimiliano Di Penta, and Andy Zaidman. Continuous delivery
practices in a large financial organization. In Software Maintenance and Evolution
(ICSME), 2016 IEEE International Conference on, pages 519–528. IEEE, 2016.

[13] Per Runeson and Martin Höst. Guidelines for conducting and reporting case
study research in software engineering. Empirical software engineering, 14(2):131,
2009.

[14] Carolyn B. Seaman. Qualitative methods in empirical studies of software engi-
neering. IEEE Transactions on software engineering, 25(4):557–572, 1999.

[15] John W Creswell and J David Creswell. Research design: Qualitative, quantitative,
and mixed methods approaches. Sage publications, 2017.

[16] Colin Robson. Real world research: A resource for social scientists and practitioner-
researchers. Wiley-Blackwell, 2002.

[17] Uwe Flick. An introduction to qualitative research. Sage Publications Limited,
2018.

[18] Juliet M Corbin and Anselm Strauss. Grounded theory research: Procedures,
canons, and evaluative criteria. Qualitative sociology, 13(1):3–21, 1990.

[19] Zengyang Li, Paris Avgeriou, and Peng Liang. A systematic mapping study on
technical debt and its management. Journal of Systems and Software, 101:193–220,
2015.

[20] Thomas J McCabe. A complexity measure. IEEE Transactions on software Engi-
neering, 2(4):308–320, 1976.

[21] Robert J Eisenberg. A threshold based approach to technical debt. ACM SIGSOFT
Software Engineering Notes, 37(2):1–6, 2012.

[22] Henry B Mann and Donald R Whitney. On a test of whether one of two random
variables is stochastically larger than the other. The annals of mathematical
statistics, pages 50–60, 1947.

[23] Samuel Sanford Shapiro and Martin B Wilk. An analysis of variance test for
normality (complete samples). Biometrika, 52(3/4):591–611, 1965.

[24] C Bonferroni. Teoria statistica delle classi e calcolo delle probabilita. Pubblicazioni
del R Istituto Superiore di Scienze Economiche e Commericiali di Firenze, 8:3–62,
1936.

[25] Norman Cliff. Dominance statistics: Ordinal analyses to answer ordinal questions.
Psychological bulletin, 114(3):494, 1993.

[26] Noureddine Kerzazi and Foutse Khomh. Factors impacting rapid releases: an
industrial case study. In Proceedings of the 8th ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement, page 61. ACM, 2014.

[27] Stephany Bellomo, Robert L Nord, and Ipek Ozkaya. A study of enabling factors
for rapid fielding: combined practices to balance speed and stability. In Proceedings
of the 2013 International Conference on Software Engineering, pages 982–991. IEEE
Press, 2013.

[28] Sandy Clark, Michael Collis, Matt Blaze, and Jonathan M Smith. Moving targets:
Security and rapid-release in firefox. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, pages 1256–1266. ACM,
2014.

[29] Alexandre Decan, Tom Mens, and Philippe Grosjean. An empirical compari-
son of dependency network evolution in seven software packaging ecosystems.
Empirical Software Engineering, pages 1–36, 2018.

[30] Alexandre Decan, Tom Mens, and Maëlick Claes. An empirical comparison of
dependency issues in oss packaging ecosystems. In 2017 IEEE 24th International
Conference on Software Analysis, Evolution and Reengineering (SANER), pages
2–12. IEEE, 2017.

[31] Joseph Hejderup, Arie van Deursen, and Georgios Gousios. Software ecosystem
call graph for dependency management. In Proceedings of the 40th International
Conference on Software Engineering: New Ideas and Emerging Results, pages 101–
104. ACM, 2018.

[32] Hadi Hemmati, Zhihan Fang, and Mika V Mantyla. Prioritizing manual test cases
in traditional and rapid release environments. In Software Testing, Verification
and Validation (ICST), 2015 IEEE 8th International Conference on, pages 1–10. IEEE,
2015.

[33] Martin Michlmayr, Brian Fitzgerald, and Klaas-Jan Stol. Why and how should
open source projects adopt time-based releases? IEEE Software, 32(2):55–63, 2015.

[34] Kai Petersen and Claes Wohlin. The effect of moving from a plan-driven to
an incremental software development approach with agile practices. Empirical
Software Engineering, 15(6):654–693, 2010.

[35] Günther Ruhe and Des Greer. Quantitative studies in software release planning
under risk and resource constraints. In Empirical Software Engineering, 2003.
ISESE 2003. Proceedings. 2003 International Symposium on, pages 262–270. IEEE,
2003.

[36] Rashmi Popli and Naresh Chauhan. Cost and effort estimation in agile software
development. In Optimization, Reliabilty, and Information Technology (ICROIT),
2014 International Conference on, pages 57–61. IEEE, 2014.

[37] Adrian Furnham. Response bias, social desirability and dissimulation. Personality
and individual differences, 7(3):385–400, 1986.

[38] Andrew Begel and Nachiappan Nagappan. Usage and perceptions of agile soft-
ware development in an industrial context: An exploratory study. In Empirical
Software Engineering and Measurement, 2007. ESEM 2007. First International Sym-
posium on, pages 255–264. IEEE, 2007.

[39] Jingyue Li, Nils B Moe, and Tore Dybå. Transition from a plan-driven process
to scrum: a longitudinal case study on software quality. In Proceedings of the
2010 ACM-IEEE international symposium on empirical software engineering and
measurement, page 13. ACM, 2010.

[40] Matthias Marschall. Transforming a six month release cycle to continuous flow.
In Agile Conference (AGILE), 2007, pages 395–400. IEEE, 2007.

[41] Daniel Alencar da Costa, Surafel Lemma Abebe, Shane McIntosh, Uirá Kulesza,
and Ahmed EHassan. An empirical study of delays in the integration of addressed
issues. In Software Maintenance and Evolution (ICSME), 2014 IEEE International
Conference on, pages 281–290. IEEE, 2014.

[42] Zadia Codabux and Byron Williams. Managing technical debt: An industrial case
study. In Proceedings of the 4th International Workshop on Managing Technical
Debt, pages 8–15. IEEE Press, 2013.

[43] Richard Torkar, Pau Minoves, and Janina Garrigós. Adopting free/libre/open
source software practices, techniques and methods for industrial use. Journal of
the AIS, 12(1), 2011.

[44] Foutse Khomh, Bram Adams, Tejinder Dhaliwal, and Ying Zou. Understanding
the impact of rapid releases on software quality. Empirical Software Engineering,
20(2):336–373, 2015.

[45] AdamPorter, Cemal Yilmaz, Atif MMemon, Arvind S Krishna, Douglas C Schmidt,
and Aniruddha Gokhale. Techniques and processes for improving the quality
and performance of open-source software. Software Process: Improvement and
Practice, 11(2):163–176, 2006.

https://labs.spotify.com/2014/03/27/spotify-engineering-culture-part-1
https://labs.spotify.com/2014/03/27/spotify-engineering-culture-part-1
https://www.ing.com/About-us/Annual-reporting-suite/Annual-Report/2017-Annual-Report-Empowering-people.htm
https://www.ing.com/About-us/Annual-reporting-suite/Annual-Report/2017-Annual-Report-Empowering-people.htm
https://www.ing.com/About-us/Annual-reporting-suite/Annual-Report/2017-Annual-Report-Empowering-people.htm

	Abstract
	1 INTRODUCTION
	2 Context
	2.1 Time-based Release Strategy
	2.2 DevOps and Continuous Delivery

	3 RESEARCH METHOD
	3.1 Study Design
	3.2 Collecting Developers' Perceptions
	3.3 Collecting Software Metrics
	3.4 Collecting Release Delay Data

	4 RESULTS
	5 DISCUSSION
	5.1 Main Findings
	5.2 Implications for Practitioners
	5.3 Future Work

	6 LIMITATIONS
	7 RELATED WORK
	8 CONCLUSIONS
	References

