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Abstract With over 10 million git repositories, GitHub is becoming one of
the most important sources of software artifacts on the Internet. Researchers
mine the information stored in GitHub’s event logs to understand how its
users employ the site to collaborate on software, but so far there have been
no studies describing the quality and properties of the available GitHub data.
We document the results of an empirical study aimed at understanding the
characteristics of the repositories and users in GitHub; we see how users take
advantage of GitHub’s main features and how their activity is tracked on
GitHub and related datasets to point out misalignment between the real and
mined data. Our results indicate that while GitHub is a rich source of data
on software development, mining GitHub for research purposes should take
various potential perils into consideration. For example, we show that the ma-

This work is an extended version of Kalliamvakou et al (2014b), published at the Interna-
tional Working Conference on Mining Software Repositories, MSR 2014. The extension falls
into two categories. First, we have identified four additional perils: two are related to the
information about GitHub users and two are related to the information that GitHub makes
available. Second, we have assessed the perils’ potential impact as threats to validity on
selected studies.
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jority of the projects are personal and inactive, and that almost 40% of all pull
requests do not appear as merged even though they were. Also, approximately
half of GitHub’s registered users do not have public activity, while the activity
of GitHub users in repositories is not always easy to pinpoint. We use our iden-
tified perils to see if they can pose validity threats; we review selected papers
from the MSR 2014 Mining Challenge and see if there are potential impacts
to consider. We provide a set of recommendations for software engineering
researchers on how to approach the data in GitHub.

Keywords Mining software repositories · git · GitHub · code reviews

1 Introduction

GitHub is a collaborative code hosting site built on top of the git version
control system. It includes a variety of features that encourage teamwork and
continued discussion over the life of a project. GitHub uses a “fork & pull”
model where developers create their own copies of a repository and submit
requests when they want the project maintainer to pull their changes into the
main branch, thus providing an environment in which people can easily con-
duct code reviews. Every repository can optionally use GitHub’s issue tracking
system to report and discuss bugs and other concerns. GitHub also contains
integrated social features: users are able to subscribe to information by “watch-
ing” projects and “following” other users, resulting in a constant stream of up-
dates about people and projects of interest. The system supports user profiles
that provide a summary of a person’s recent activity within the site, such as
their commits, the projects they forked or the issues they reported.

Promise I: GitHub is a rich source of software engineering research

With over 10.6 million repositories1 hosted as of January 2014, GitHub is
currently the largest code hosting site in the world. Software engineering re-
searchers have been drawn to GitHub due to this popularity, as well as its
integrated social features and the metadata that can be accessed through its
api. To date, there has been a variety of research on GitHub and its commu-
nity. Qualitative studies (Begel et al, 2013; Dabbish et al, 2012; Marlow et al,
2013; McDonald and Goggins, 2013; Pham et al, 2013; Gousios et al, 2015)
have focused on how developers use GitHub’s social features to form impres-
sions of and draw conclusions about developer and project activity to assess
success, performance, and possible collaboration opportunities. Quantitative
studies (Gousios et al, 2014; Takhteyev and Hilts, 2010; Thung et al, 2013;
Tsay et al, 2012) have attempted to systematically archive GitHub’s publicly
available data and use it to investigate development practices and network
structure in the GitHub environment.

1
https://github.com/features
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As part of our research about collaboration on GitHub (Kalliamvakou et al,
2014a), we conducted an exploratory online survey in 2013 to assess the rea-
sons for developers using GitHub and how it supports them in working with
others. While analyzing the survey data, we noticed that GitHub repositories
were also used for purposes other than strictly software development: many
respondents were using repositories to archive data, to host personal projects
without any plans to collaborate on their work, or for activities outside of
software engineering. This signaled that there may be significant unseen perils
in using GitHub data “as-is” for software engineering research. The variety of
repository contents and activity, as well as developers’ intentions, can alter
research conclusions if care is not taken to first establish that the data fits the
research purpose.

The potential for misinterpretation when working with publicly mined data
has also been noted with datasets pulled from SourceForge (Howison and
Crowston, 2004). Furthermore, Bird et al (2009b) described the promises asso-
ciated with exploiting the information stored in a decentralized version control
system. Due to these issues, we formulated the following research question:

RQ: What are the promises and perils of mining GitHub for software
engineering research?

This study highlights potential threats to validity for research that relies on
GitHub as the main source of data about software engineering development.
We use insights gained from a survey conducted with 240 GitHub users to
identify potential perils, and we provide evidence of these perils based on
quantitative analysis of the ghtorrent dataset as well as a manual inspection
of 434 GitHub repositories. We outline some analysis risks to avoid and provide
recommendations on how researchers can best use the data available from
GitHub. To demonstrate the usefulness of these perils, we analyzed four papers
from the MSR’14 Mining Challenge(Baysal and Gousios, 2014). We described
how the perils appear in the dataset used in this challenge and create potential
validity threats to the results of these papers.

2 Background & Related Work

Many of the projects hosted on GitHub are public, allowing anyone with an
Internet connection to view the activity within those projects, including in-
formation about issues, pull requests, commits, comments and subscriptions.
The large amount of public data on GitHub and its availability via an API
make it possible for researchers to easily mine project data. Various tools and
datasets have been created to assist researchers with this task.

2.1 Background

Web-based code hosting services such as GitHub have piqued the interest of
many a software engineering researcher. The abundance and availability of
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public data simplifies the data collection and processing issues that are often
encountered in research. However, there are still practical difficulties that can
potentially alter conclusions drawn from the data.

SourceForge is one of the most popular code hosting sites, but it peaked
in popularity prior to GitHub’s wide-spread adoption (Finley, 2011). How-
ison and Crowston (2004) noted that projects hosted on SourceForge were
often abandoned and that their data was often contaminated with data im-
ported from previous systems. They also found that information was often
missing due to project data being hosted outside of the SourceForge space.
Similarly, Weiss (2005) concluded that not all SourceForge data is to be con-
sidered perfect: names of categories often change in SourceForge and projects
are constantly initiated and then go inactive. By comparing his data to that
of FLOSSMole2, Weiss highlighted that information about inactive and inac-
cessible projects was missing altogether. Rainer and Gale (2005) conducted
an in-depth analysis of the quality of SourceForge data. They noted that only
1% of SourceForge projects were actually active as indicated by their metrics.
The authors suggested caution when using SourceForge data and advised that
the research community should perform an evaluation of the quality of data
taken from portals such as SourceForge. Accordingly, we present study find-
ings highlighting potential risks for researchers to keep in mind when drawing
conclusions from GitHub data.

Recent software engineering research has also highlighted biases in bug-
fix datasets. These biases can compromise the validity and generalizability of
studies using the datasets. Researchers often rely on links between bugs and
commits made in commit logs, but linked bugs represent only a fraction of
the entire population of fixed bugs. Bird et al (2009a) found that this set of
bugs is a biased sample of the entire population. Bachmann et al (2010) found
that the set of bugs in a bug tracking system itself may be biased since not all
bugs are reported through those systems. Nguyen et al (2010) discovered that
similar biases exist even in commercial projects that employ strict guidelines
and processes. However, (Rahman et al, 2013) showed that a large sample size
can counter the effects of bias. In our work, we show that bias exists across
large GitHub datasets and provide recommendations on how to avoid such
biases.

Bird et al (2009b) described the problems that mining git poses for soft-
ware engineering research. Their work demonstrated that the differences be-
tween centralized version control systems (such as subversion) and git cre-
ated certain challenges for those using git repositories for research.

2.2 Related Work

The introduction of social features in code hosting sites has drawn much at-
tention from researchers. Several qualitative studies have interviewed GitHub

2 A collection of open source software data, formerly known as OssMole.
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users to better understand how these social features are being used (Begel
et al, 2013; Dabbish et al, 2012; Marlow et al, 2013). Their findings indicate
that

GitHub users form impressions of and draw conclusions about the activ-
ities and potential of developers and projects. Users then internalize those
conclusions to decide whom and what to keep track of, or where to contribute
next. The transparency brought about by these social features also appears
to allow teams to maintain awareness of their members’ activity and use this
towards organizing their work. Pham et al (2013) investigated whether the
higher visibility of developer actions enabled by GitHub’s social features has
an influence on developers’ testing behaviors. Through interviews and an on-
line survey, they highlighted the challenges of promoting a desirable testing
culture among contributors and suggested strategies for doing so.

Tsay et al (2012) performed a quantitative study on 5,000 projects to un-
derstand how GitHub’s social features impact project success. McDonald and
Goggins (2013) interviewed GitHub users to identify how they measured suc-
cess on their projects. Their study shows that project members see GitHub’s
social features as the driver behind increased contribution.

Additional research has extended beyond GitHub’s social features. Thung
et al (2013) built social networks of developers involved with 100,000 GitHub
projects to demonstrate the social structure of the GitHub ecosystem.
Takhteyev and Hilts (2010) looked at the geographic locations of GitHub
developers by examining self-reported location information available within
GitHub profiles. Gousios et al (2014) examined how pull requests work on
GitHub. They found that the pull request model offers fast turnaround, in-
creased opportunities for community engagement, and decreased time to in-
corporate contributions. They showed that a relatively small number of factors
affect both the decision to merge a pull request and the time to process it.
They also qualitatively examined the reasons for pull request rejection and
found that technical reasons are a small minority. They also demonstrated
that many pull requests that appear to be unmerged in GitHub were actually
merged. This paper extends their work.

Other research has focused on making the data available through the
GitHubapi more readily accessible. The ghtorrent (Gousios and Spinellis,
2012) project provides a mirror of the GitHubapi data, which it obtains by
monitoring and recording GitHub events as they occur and applying recur-
sive dependency-based retrieval of the related resources. When run in stan-
dalone mode, ghtorrent can also retrieve the history of individual reposito-
ries. Gousios and Zaidman (2014a) have combined this dataset with their re-
search in Gousios et al (2014) to provide a dataset of pull requests for GitHub
projects.

The GitHub archive (Grigorik, 2012) provides a dataset of the history of
events in GitHub. It also obtains its data by monitoring the GitHub timeline.
However, as the GitHub archive started data collection in 2011, it is an incom-
plete mirror—ghtorrent, in comparison, has retrieved the complete history of
GitHub. Moreover, one can use tools such as Gitminer (Wagstrom et al, 2013)
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to extract the history of events for specific repositories. Gitminer crawls the
GitHubapi for any desired project and produces a graph dataset.

Tsay et al (2014) mined the data they needed for their research using
GitHub’s api. They described that in order to reach meaningful conclusions,
they had to filter out the majority of projects in GitHub because many were
inactive, had very few contributors or did not use GitHub’s issue tracking
system.

Researchers have taken advantage of the large amount of data available
from GitHub and tools like the ghtorrent, the GitHub archive and Gitminer
to perform studies across a large number of projects. Studies have investi-
gated testing patterns(Kochhar et al, 2013), programming languages mycite-
bissyande2013popularity, issue reporting(Bissyande et al, 2013), project suc-
cess(Tsay et al, 2012), and more. Takhteyev and Hilts (2010) looked at the
geographic locations of GitHub developers by examining self-reported loca-
tion information available within GitHub profiles.

3 Study Design

The detailed analysis reported in this paper was motivated by our own study
of the GitHub environment with the goal of examining how it is used for col-
laboration (Kalliamvakou et al, 2014a)—we surveyed GitHub users and then
conducted interviews to further explore our study findings. We selected sur-
vey participants from GitHub’s public event stream in May 2013, choosing
recently active users with public email addresses. Our survey was exploratory
with open-ended questions asking about reasons for using GitHub, how GitHub
supports collaboration, managing dependencies and tracking activity, as well
as GitHub’s effect on the development process. We sent our survey to 1,000
GitHub users and received 240 responses (24% response rate). We received sev-
eral unexpected responses regarding the purpose of using GitHub. For exam-
ple, respondents noted they used GitHub for purposes other than code hosting
or collaborative development, such as for data storage, personal projects and
class projects.

In an on-going project, we found that choosing which GitHub-based col-
laborative software engineering projects to study was not a trivial task. Fre-
quently, projects were empty, had very few files or had been inactive for a long
time. It was also common to find repositories where the only contributor was
its owner.

These cases motivated our further analysis of the GitHub repository con-
tents and of collaboration within GitHub, as discussed in sections 4.3 and 4.4.
We then quantitatively and qualitatively analyzed the GitHub data to iden-
tify and measure the extent and frequency of perils. For the purposes of this
paper, we define a “peril” as a characteristic of the data that can be retrieved
from GitHub that can potentially threaten the validity of software engineering
research that uses such data.

Our process was divided as follows:
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1. Quantitative analysis of project metadata. We used the ghtorrent (Gousios
and Spinellis, 2012) dataset made available in Jan 20143. As described in
section 1, the ghtorrent dataset is a comprehensive collection of GitHub
repositories, their users, and their events (including commits, issues and
pull requests). We also used the MSR’14 Mining Challenge Dataset(Baysal
and Gousios, 2014) and cloned many repositories in GitHub in order to
compare the ghtorrent data with current repositories.

2. Manual analysis of a 434-project sample. When quantitative analysis
of metadata was not sufficient, we turned to in-depth manual analysis. We
selected a random sample of 434 projects from the 3 million projects that
exist in the ghtorrent dataset (cf. Peril I in section 4 for our definition of
a project). This sample size provides a confidence level of 95% with a ±5%
confidence interval.

4 Results

Through our mixed methods study, we identified thirteen perils that pose
potential threats to validity for studies involving software projects hosted in
GitHub (Table 1 summarizes them). In this section, we describe and provide
supporting evidence for each peril, and include recommendations on how to
avoid them.

4.1 Repositories are Part of Projects

Peril I: A repository is not necessarily a project

The typical pull request development model (as used by GitHub) is a newer
method for collaborating in distributed software development ?. With this
model, the project’s main repository is not writable by potential contributors.
Instead, the contributors fork (clone) the repository and make their changes
independent of each other. When a set of changes is ready to be submitted to
the main repository, they create a pull request which specifies a local branch
to be merged with a branch in the main repository. A member of the project’s
core team (a committer of the destination repository) is then responsible for
inspecting the changes and pulling them into the project’s master branch. If
changes are considered unsatisfactory (e.g., as a result of a code review), more
changes may be requested. In this case, contributors need to update their local
branches with the new commits.

As a consequence of this popular development model, one can divide repos-
itories into two types: base repositories (ones that are not forks) and forked
repositories. The activity in forked repositories is recorded independently from

3
http://ghtorrent.org/downloads.html
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Table 1 Summary of the perils discovered in our study.

Peril Description
Project Related
I A repository is not necessarily a

project
A project is typically part of a network of
repositories: at least one of them will be des-
ignated as central, where code is expected to
flow to and where the latest version of the
code is to be found.

II Most projects have low activity Most projects have very few commits.
III Most projects are inactive Most projects do not have recent activity

(only 13% of projects have been active in the
last month).

IV Many projects are not software de-
velopment

A large portion of projects are not used for
software development activities.

V Most projects are personal More than two thirds of projects (71.6% of
repositories) have only have one committer:
its owner.

VI Many active projects do not use
GitHub exclusively

Many active projects do not conduct all their
software development activities in GitHub.

VII Few projects use pull requests Only a fraction of projects use pull requests.
And of those that use them, their use is very
skewed.

Pull Requests Related
VIII Merges only track successful code If the commits in a pull request are reworked

(in response to comments), GitHub records
only the commits that are the result of the
peer review, not the original commits.

IX Many merged pull requests appear
as non-merged

Only pull requests merged via the “Merge”
button are marked as merged. But pull re-
quests can also be merged via other meth-
ods, such as using git outside GitHub; in
those cases, the pull-request will not appear
as merged.

User Related
X Not all activity is due to registered

users
The activity in GitHub repositories is some-
times due to non-users; in some cases, the
activity of a user is not properly associated
with her account.

XI Only the user’s public activity is
visible

Approximately half of GitHub’s registered
users do not work in public repositories.

Github Related
XII GitHub’s API does not expose all

data
The GitHub API exposes either a subset of
events or entities, or a subset of the informa-
tion regarding the event or the entity.

XIII Github is continuously evolving GitHub continues to evolve and it has
changed some features and provided new
ones. Similarly, the projects evolve and are
capable of changing their own history.
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their associated base repositories. Until a commit is pulled into another repos-
itory, this commit appears only in the history of the recipient repository4.
Therefore, measuring the activity of a repository independently of its forked
repositories will ignore the non-merged activity of all of them as part of a
single project.

For example, the Ruby on Rails project5 has 8,327 forks (8,275 forks were
made directly from its base repository, with the remainder being forks of forks).
Of the 50k commits in the Rails repository, ghtorrent reports only 34k com-
mits as having occurred in the Rails base repository (rails/rails), and the
remaining 16k originating in its forks. However, 11k commits have been made
in forks but have not been propagated to the base repository.

To properly account for all the activity of a software development team, in
the rest of this paper we aggregate all the activity of the base repository and
its forks. Thus we use the term project to refer to a base repository and its
forks, and continue to use the term repository to denote a GitHub repository
(either a base repository or a fork).

Of the 6.8M public repositories in GitHub, 3.0M (44%) are base repos-
itories. Thus, these base repositories represent 3.0M different projects (only
0.6M of them have been forked at least once). For the base repositories with at
least one fork, their number of forks is highly skewed: 80% have one fork only
and 94% have at most 3 forks. However, there are some repositories that are
heavily forked: 4,111 base repositories have been forked at least 100 times. The
most forked repo is octocat/Spoon-Knife (22,865 forks), a GitHub administered
repository for users to test how forking works.

It is important to highlight that many forks can operate independently
from the rest of the project. For example, a fork could be used to develop
customizations that are never intended to be contributed back into the main
project. However, it is difficult to determine if a repository that has yet to
contribute to the project will or will not contribute in the future.
Peril Avoidance Strategy: To analyze a project hosted on GitHub, consider
the activity in both the base repository and all associated forked repositories.

4.2 On the Activity of Projects

Activity in GitHub is mostly reflected in commits—in all of GitHub, there are
more than 20 times more commits than pull requests or issues. Thus, we can
measure the activity of a project using two different proxies: by its number of
commits and by the period in which its commits are made.

Peril II: Most projects have low activity

4 ghtorrent associates a commit with the repository where it first sees it (table commits)
and also links it to all repositories this commit has appeared into (table repo_commits)

5
http://rubyonrails.org GitHub repository located at https://github.com/rails/

rails.
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Fig. 1 Cumulative ratio of projects with a given number of commits (includes only projects
with at least one commit). Most projects have very few commits. The median number of
commits per project is 6 and 90% of projects have less than 50 commits.
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Fig. 2 Lorenz curve showing that a small number of projects account for most of the
commits.
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We measured the activity of commits per project—that is, the union of
all the commits in all the repositories of a given project. Figure 1 shows the
cumulative distribution (which is very skewed) with a median number of com-
mits of only 6 and a maximum of 427,650 (these calculation do not include
projects with zero commits–398,244 projects, 13.3%, had no commits).

Although there is a large number of projects with little activity, the most
active projects account for the majority of commits in GitHub. This is shown
in the Lorenz curve in Figure 2 that depicts the inequality of commits across
the population of projects. The most active 2.5% of projects account for the
same number of commits as the remaining 97.5% projects.
Peril Avoidance Strategy: Consider the number of recent commits on a
project to select projects with an appropriate activity level. Avoid claims of
generalization if your study considers only very active projects, as these are
only a small set of those hosted on GitHub.
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Fig. 3 Cumulative ratio of active projects during the last n months since Jan 9, 2014. The
red line is the proportion of projects created during the last n months. Approximately 54%
of projects have been active in the last six months. Only 12.5% of projects were active in
the last month and 4% of them were created during that period.

Peril III: Most projects are inactive

If most of the projects have few commits, it is likely that they will also
be inactive. Figure 3 shows the cumulative ratio of projects that have had
activity during the last n months. For instance, in the last 6 months (since July
9, 2013), only 54% of the projects were active. However, many projects were
created during this period (34% of all projects in GitHub). Of the 1,958,769
projects that were created before July 9, 2013, only 430,852 (22%) had at least
one commit in the last 6 months.
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We can also measure project activity by comparing the date its first repos-
itory was created in GitHub with the date of the project’s last commit (as
shown in Figure 4). In this regard, the median number of days a project is
active is 9.9 days. 32% of projects were active for 1 day, suggesting that they
are being used either for testing or for archival purposes. Only 38% were active
for more than 1 month. However, many active projects continue to be active:
25% of projects have at least 100 days of activity.
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Fig. 4 Cumulative ratio of projects that had activity the last n days since their creation.
The median number of days is 9.9, with 25% of projects at 100 or more days; only 32% had
activity less than 1 day after being created.

Peril Avoidance Strategy: To identify active projects, consider the number
of recent commits and pull requests.

4.3 On the Contents of Projects

Peril IV: Many projects are not software development

The answers to our survey indicated that GitHub is used for various pur-
poses besides software development. 34 of our 240 respondents (14%) said they
use GitHub repositories for experimentation, hosting their Websites, and for
academic/class projects. About 10% of respondents use GitHub specifically
for storage.

The purpose of a repository cannot be reliably and automatically identified
from the project metadata. We used the 434 randomly selected repositories to
determine if GitHub repositories are used for software development or other
purposes; this sample provides a confidence level of 95% with a ±5% confi-
dence interval. We reviewed the description of and files associated with each
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Table 2 Number of repositories per type of use for the manual inspection. These categories
are mutually exclusive.

Category of use Number of repositories
Software development 275 (63.4%)
Experimental 53 (12.2%)
Storage 36 (8.3%)
Academic 31 (7.1%)
Web 25 (5.8%)
No longer accessible 11 (2.5%)
Empty 3 (0.7%)

repository and assigned an appropriate label to mark its contents, e.g, “soft-
ware library” or “class project” using standard qualitative coding techniques
(Corbin and Strauss, 2008). Open coding was used to identify labels for each
repository. The open coding was performed by two individuals who each coded
half of the repositories. After the open coding, the two coders agreed upon a set
of labels and used axial coding to aggregate the labels to create exclusive cate-
gories of use. We defined the purpose of repositories as “Software development”
if their contents were files that are used to build tools of any sort. This type
of use included repositories of libraries, plugins, gems, frameworks, add ons,
etc. “Experimental” was the class of repositories containing examples, demos,
samples, test code and tutorial examples. Websites and blogs were classified
under “Web”, and class and research projects under “Academic”. The “Storage”
category included repositories that contained configuration files (including “.” ’
files) or other documents and files for personal use, such as presentation slides,
resumes and such. Repositories that gave an error (404 This is not the reposi-
tory you are looking for.) were marked as “No longer accessible”. Repositories
containing only a license file, a gitignore file, a README file, or no files at
all were placed in the category “Empty”. Table 2 shows our categories and the
distribution of the 434 repositories.

In particular, the “Web” category has become an important use of GitHub.
GitHub allows its users to host Websites on its servers for free6. Repositories
using this service typically include github.io or github.com in their name. There
are 73,745 projects with such names, indicating the popularity of this free
service.
Peril Avoidance Strategy: When trying to identify which software devel-
opment projects to analyze, do not rely just on the types of files within the
repositories, but also also review descriptions and README files to ensure
the projects fit the research needs.

4.4 On the Users Involved with Projects

Peril V: Most projects are personal

6 See http://pages.github.com/ for details.
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Our survey asked respondents if they used GitHub primarily for collabora-
tion with others or for personal use. 90 out of 240 respondents (38%) answered
that they used GitHub mainly for their own projects and not with the inten-
tion of collaborating with others. This response was a motivating factor to look
into how much collaboration and social interaction is taking place in GitHub
projects.

In git, a commit records both its author (who wrote the patch) and its
committer (who committed the patch to the repository). The committer is the
person who has write access to the repository. In GitHub, only 2.9% of commits
have an author who is not the committer. We can evaluate if a project is
personal by counting the number of different committers in all the repositories
of the project.

The number of committers per project is very skewed: 67% of projects have
only 1 committer, 87% have 2 or less, and 93% have 3 or less. As expected,
repositories have fewer committers than projects: 72% have 1 committer, 91%
have 2 or less, and 95% have 3 or less. The proportions are the same for num-
bers of authors. The number of committers in our manual sample is similar:
65% hand only one committer, 83% two or less, and 90% three or less.

These results indicate that even though GitHub is targeted towards social
coding, most of the projects it hosts are used by one person only. It is very
likely that a large proportion of projects with only one committer are for
experimental or storage purposes.
Peril Avoidance Strategy: To avoid personal projects, consider the number
of committers.

4.5 On the Use of Non-GitHub Infrastructure

Peril VI: Many active projects do not use GitHub exclusively

A difficult question to answer is whether the data in GitHub represents
most (if not all) the visible activity of a development project. In other words,
do projects in GitHub use other forms of collaboration?

There were indications in the survey responses pointing towards project
activity talking place outside GitHub. As one of the respondents put it:

“Any serious project would have to have some separate infrastructure
- mailing lists, forums, irc channels and their archives, build farms,
etc. [...] Thus, while GitHub and all other project hosts are used for
collaboration, they are not and cannot be a complete solution."

This motivated us to look into whether repositories host project code and
other content on GitHub, but perform development and collaboration activities
elsewhere.

There are several ways we could evaluate this. One of them is to determine
if all the committers and authors are users in GitHub. If a commit is made by
someone who is not a GitHub user, then GitHub records an email address as
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its committer rather than a GitHub user (see Peril X Not all activity is due
to registered users). In GitHub, 23% of committers or authors of a commit are
not GitHub users. The likely reason for this result is that some git operations
from non-users have been merged outside GitHub and it is exacerbated by
mirrors set up to track activity in repositories outside GitHub.

Mirrors are replicas of the code hosted in another repository. In some cases,
a mirror project clearly indicates that GitHub is not to be used for submission
of code. For example, the project postgres-xc/postgres-xc states in its descrip-
tion “Mirror of the official Postgres-XC GIT repository. Note that this is just a
*mirror* - we don’t accept pull requests on github...”. Nonetheless, this project
has 14 different forks.

We identified many repositories that are mirrors—GitHub officially main-
tains 91 mirrors of many popular projects7. Typically, the description of a
repository states if it is a mirror. For example, the description of reposi-
tory abishekk92/voipmonitor reads “A mirror of the SVN repo at https:
//voipmonitor.svn.sourceforge.net/...”. Descriptions can also indicate
whether the mirror is automatic and note its frequency of update (e.g., “Mirror
of official clang git repository located at http://llvm.org/git/clang. Updated
hourly.”).

The case-insensitive regular expression mirror of .*repo|git mirror of
finds 1,739 projects (12,709 repositories) as mirrors of repositories outside
GitHub. The median number of commits is 52. Some of there repositories had
a lot of activity: 78 had more than 1,000 commits (1.4% of all repos with at
least 1,000 commits). We examined 100 of these repositories and found that all
of them were external mirrors. We identified many mirrors from SourceForge
repositories and Bitbucket (a competing git repository hosting service)—these
results are summarized in Table 3.

The implications of these results is that part of the development of a project
happens in GitHub, but not necessarily all.

Table 3 Repositories hosted on GitHub labeled as mirrors. GitHub hosts mirrors from
many sources, including SourceForge and Bitbucket. The bottom section shows subsets of
the top section. Regular expressions are case insensitive.

Set Used regular expresion Projets Repos
Mirror of mirror of .*repo|git mirror of 1,851 12,709

Subsets
Located on Sourceforge sourceforge|sf\.net 117 511
Located on Bitbucket bitbucket 91 249
From subversion repos \W(svn|subversion)\W 622 4966
From mercurial repos \W(mercurial|hg)\W 113 590
From CVS repos \Wcvs\W 55 212

The development within a mirror in GitHub implies that some members of
a project are using GitHub for one of two purposes. One purpose is to develop

7 https://github.com/mirrors
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their work and later submit it to the external repository. For example, the
project Linux-Samsung located at kgene/linux-samsung (which, according to
GitHub, has no forks and is not a fork itself) regularly contributes commits to
the Linux kernel (we have observed 123 commits in Linus Torvald’s repository
that originated here8). The second purpose is to develop customizations of the
original project for a different purpose, independent of the original develop-
ment team. In this category, we find multiple repositories that contain variants
of the kernel, such as 2.6.35 Kernel for Samsung Galaxy S series Phones or
Kernel 2.6.35.7 modified for Dropad A8T and similar.

Interestingly, some mirrors are from repositories that use other version
control systems, such as Mercurial, Subversion or cvs. This implies that, in
some cases, contributors prefer git over these other version control systems to
do their daily work, but this needs further research to be confirmed. Similarly,
many projects use their own defect tracking systems to handle issues. For
example, Mozilla’s Gaia (mozilla-b2g/gaia), one of the most active projects
in GitHub, has disabled issue tracking in GitHub and expects users to file
issues through bugzilla.mozilla.org.

We conducted a small survey that asked respondents to tell us whether
they used GitHub’s tools or an external toolset for specific tasks, such as
opening and merging pull requests, tracking issues, or for communication. We
sent an additional questionnaire to 100 GitHub users via email and received
27 responses (27% response rate). Even though 52% said they use GitHub to
open pull requests and 60% said they use the site to accept and merge code
changes, only 24% said they use GitHub for code reviews. 32% said they use an
external tool for reviews. This further validates that all software development
activities do not occur within GitHub itself for many projects.
Peril Avoidance Strategy: Avoid projects that have a high number of com-
mitters who are not registered GitHub users and projects with descriptions
that explicitly state they are mirrors.

4.6 On Pull Requests

Promise II: GitHub provides a valuable source of data for the study of
code reviews in the form of pull requests and the commits they reference

GitHub made the “Fork & Pull” development model popular, but pull re-
quests are not unique to GitHub. In fact, git includes the git-request-pull
utility which provides the same functionality at the command line. GitHub
and other code hosting sites improved this process significantly by integrating
code reviews, discussions and issues, thus effectively lowering the entry barrier
for casual contributions. Forking and pull requests create a new development
model where changes are pushed to the project maintainers and go through
code review by the community before being integrated.

8 We currently track all sources of commits in the Linux kernel: hydraladder.

turingmachine.org
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Fig. 5 Lorenz curve for the number of pull requests per project (left) and the corresponding
histogram (right). The top 1.6% of projects use 50% of the total pull requests. These plots
only include projects with at least one pull request.

Peril VII: Few projects use pull requests

Across GitHub, the use of pull requests is not very widespread. Pull re-
quests are only useful between developers, and therefore, are non-existent in
personal projects (67% of projects, see Peril V Most projects are personal). Of
the 2.6 million GitHub projects that represent actual collaborative projects (at
least 2 committers), only 268,853 (10%) used the pull request model at least
once; it is likely that the remaining 2.4M projects are using a shared reposi-
tory model exclusively (with no incoming pull requests) where all developers
are granted commit access. Moreover, the distribution of pull requests among
projects is highly skewed, as can be seen in Figure 5. The median number of
pull requests per project is 2 (44.7% of projects have only 1 and 95% have 25
or less).

Nonetheless, there are projects that received more than 5,000 pull requests
in 2013 alone, such as the Gaia phone application framework and the Home-
brew package manager. In fact, a significant number of projects (⇠1700) re-
ceived more than 100 pull requests in 2013. These projects can create a sample
big enough to deliver statistically significant results for many research ques-
tions.
Peril Avoidance Strategy: When researching the code review process on
GitHub, consider the number of pull requests before selecting a project. Per-
sonal projects will rarely contain pull requests.

4.6.1 Pull Requests as a Code Review Mechanism

A GitHub pull request contains a branch (local or in another repository) from
which a core team member should pull commits. GitHub automatically dis-
covers the commits to be merged and presents them in the pull request. By
default, pull requests are submitted to the destination repository for review.
There are two types of review comments:
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– Discussion: Comments on the overall contents of the pull request. Interested
parties engage in technical discussion regarding the suitability of the pull
request as a whole.

– Code Review: Comments on specific sections of the code. The reviewer
makes notes on the commit diff, usually of a technical nature to pinpoint
potential improvements.

Any GitHub user can participate in both types of review. As a result of
the inspection, pull requests can be updated with new commits or the pull
request can be rejected—either as redundant, uninteresting or duplicate. The
exact reason a pull request is rejected is not recorded, but can often be inferred
from the comments.

With an update, the contributor creates new commits in the forked repos-
itory and, after the changes are pushed to the branch to be merged, GitHub
automatically updates the commits in the pull request. The code review can
then be repeated on the refreshed commits. In our dataset of 434 projects, 17%
of the pull requests received an update after a comment (discussion or code re-
view). Care must be applied when interpreting this result as many comments,
especially in the discussion section, are merely expressions of gratitude for the
contributor’s work rather than a proper code review.

The discussion around a pull request is usually brief: 80% of the pull re-
quests have less than 3 comments (both code review and discussion). More-
over, the number of participants in the code review ranges between 0 and 19,
with 80% of the pull requests having less than 2 participants. The number of
commits examined per peer review is less than 4 in 80% of the pull requests.
The numbers are comparable with other work on code review (Rigby et al,
2008; Rigby and Bird, 2013; Bacchelli and Bird, 2013) which suggests that
the peer review process may have more fundamental underpinnings yet to be
explored. Therefore, GitHub data may be a very good source of quantitative
data for peer review due to homogenization across various project repositories
(provided the following shortcomings are taken into consideration).

It is important to note that code reviews in pull requests are in many cases
implicit and therefore not observable. Many pull requests that were merged
received no comments (46% in our 434-project sample). It is probably safe
to assume that the developer that performed the merge did inspect the pull
request before merging it. Thus, a code review occurred, but there is no infor-
mation about it except the fact that the code was merged (it is unlikely that
a project will have a policy to accept all pull requests without review).

Peril VIII: Merges only track successful code

Another shortcoming of using GitHub data for peer review research is
the fact that the set of commits that were reviewed might not be readily
observable—and might require further processing to recover them. Commonly,
projects require a commit squash (merging all different commits into a single
one) before the set of commits is merged with the main repository. While
GitHub does record the intermediate commits, it does not report them through
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its api as part of the pull request. Moreover, the original commits are deleted
if the source repository is deleted. This means that at the time of analysis, the
researcher can only observe the latest commit, which is the outcome of the
code review process.
Peril Avoidance Strategy: To analyze the full set of commits involved in a
code review, do not rely on the commits reported by GitHub.

Peril IX: Many merged pull requests appear as non-merged

When the code review is finished and a pull request is deemed satisfactory,
the pull request can be merged. The versatility of git and GitHub enables at
least three merging strategies:

– Through GitHub facilities, using the “Merge” button.
– Using git, by merging the main repository branch and the pull request

branch. A variation of this merge strategy is cherry-picking, where only
specific commits from the pull request branch are merged into the main
branch.

– By creating a textual patch between the pull request and main repository
branches and applying it to the master branch. This is also known as
commit squashing.

The merge strategies presented above differ in the amount of history (com-
mit order) and authorship information preserved. Specifically, merging through
either git or GitHub preserves full historical information—except in the case
of cherry-picking where only authorship is preserved. A patch-based merge
does not maintain authorship or history.

Moreover, GitHub can only detect and report merges happening through
its pull request merge facilities. Therefore, if a project’s policy is to only merge
using git, all pull requests will be recorded as unmerged in GitHub. In prac-
tice, however, most projects use a combination of GitHub and git merge
strategies.

To streamline the closing of pull requests and issues, GitHub provides a
way to close them via the contents of the log of a commit. For example, if a
commit log contains the string Fixes #321 and 321 is a pull request or an
issue, then this pull request or issue is closed. Fixes is one of nine keywords
that can be used9. For example, the project homebrew/homebrew has had
13,164 pull requests opened, 12,966 closed, but only 129 merged. However, its
logs show that 6,947 pull requests (48% of total) and 2,013 issues (19%) have
been closed from commit logs. This shows that, at least in some projects, one
cannot rely on GitHub’s Merged attribute of a pull request.

To identify merged pull requests that are merged outside GitHub, we have
developed a set of heuristics based on conventions advocated by GitHub. The
most important are presented below (for a full description and evaluation of
these heuristics, see (Gousios et al, 2014)).

9 For the entire list visit https://help.github.com/articles/

closing-issues-via-commit-messages.



20 Eirini Kalliamvakou et al.

H1 At least one of the commits in the pull request appears in the target
project’s master branch.

H2 A commit closes the pull request using its log (e.g., if the log of the commit
includes one of the closing keywords, see above) and that commit appears
in the project’s master branch. This means that the pull request commits
were squashed onto one commit and this commit was merged.

H3 One of the last three (in order of appearance) discussion comments contain
a commit unique identifier—this commit appears in the project’s master
branch and the corresponding comment can be matched by the following
regular expression:
(?:merg|appl|pull|push|integrat)(?:ing|i?ed)

H4 The latest comment prior to closing the pull request matches the regular
expression noted above.

Across GitHub, 1,145,099 of 2,552,868 (44%) pull requests are reported as
merged. In the 434-project sample, only 37% of the pull requests were merged
using GitHub facilities. By applying the heuristics presented above, an extra
42% (H1: 32%, H2: 1%, H3: 5%, H4: 4%) of pull requests are identified as
merged, while 19% cannot be classified. In other work (Gousios et al, 2014),
we used a carefully selected sample of 297 projects that heavily relied on pull
requests: 65% of the pull requests were merged using GitHub facilities, while
the heuristics identified another 19% (H1: 7%, H2: 1%, H3: 3%, H4: 7%) as
merged. In another dataset (Gousios and Zaidman, 2014b) containing almost
1000 projects that use pull requests, 58% of the pull requests were merged
using GitHub’s facilities while 18% are identified as unmerged. The remaining
24% are identified as merged using the heuristics (H1: 11%, H2: 3%, H3: 3%,
H4: 7%) .

The heuristics proposed above are not complete (i.e., they may not identify
all merged pull requests) nor sound (i.e., they may lead to false positives,
especially H4). In other work (Gousios et al, 2014), we manually inspected
350 pull requests that were not identified as merged and found that 65 of
them were actually merged. This means the actual percentage of merged pull
requests may be even higher. The fact remains, however, that only a fraction
of merges are reported through GitHub, but heuristics can improve merge
detection, in some cases dramatically.
Peril Avoidance Strategy: Do not rely on GitHub’s merge status, but con-
sider using heuristics (like the ones described above) to improve merge detec-
tion when analyzing merged pull requests.

4.6.2 Pull Requests as an Issue Resolution Mechanism

Promise III: The interlinking of developers, pull requests, issues and
commits provides a comprehensive view of software development activities

Issues and pull requests are fused together on GitHub: for each opened pull
request, an issue is opened automatically. Commits can also be attached to
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issues to convert them to pull requests (albeit with external tools). The issue
part of the pull request is used to keep track of any discussion comments. De-
velopers are encouraged to reference issues or pull requests in commit messages
or in issue comments, while GitHub automatically extracts such references and
presents them as part of the discussion flow. Moreover, both issues and pull
requests can be linked to repository-specific milestones, helping projects track
progress.

The fact that issues and pull requests are so tightly integrated opens a
window of opportunity for detailed studies of developer activity. For example,
a researcher can track the resolution of an issue from the reporting phase,
through source code modifications, the code review and the final integration
of the fix. As user actions always affect issues and pull requests, one could
also investigate the formation of user clusters across specific types of activi-
ties, which would reveal emergent user organizations (teams or hierarchies).
In addition, the interlinking of issues, pull requests and commits creates an
intricate web of actions that could be analyzed using social network techniques
to discover interesting collaboration patterns.

Despite the wealth of interlinked data, there are two shortcomings. First,
repository mining for issue tracking repositories is greatly enhanced if records
are consistent across projects. GitHub’s issue tracker only requires a textual
description to open an issue. Issue property annotations (e.g., affected versions,
severity levels) are delegated to repository-specific labels. This means that
issue characteristics cannot be examined uniformly across projects. Second,
across GitHub, only a small fraction (12%) of repositories that where active in
2013 use both pull requests and issues. Many interesting repositories, especially
those that migrated to GitHub, have an external issue database (see Peril IV
Many active projects do not use GitHub exclusively).

4.7 On Users

Peril X: Not all activity is due to registered users

GitHub is a service built around git. A team of developers who use git can
choose to use GitHub for all or some of their development activities. GitHub
enables teams to import their git repositories into GitHub, even if some mem-
bers of the development team are not GitHub users. In some cases, such as
with “mirrors”, it is possible that no one on the development team is a regis-
tered GitHub user. This implies that some activities recorded in GitHub are
not performed by its registered users.

GitHub allows users to associate one or more email addresses with their
account (no two users can share the same email address). When GitHub re-
ceives a commit into a repository via a push, it uses the email address of the
committer and the author field of the commit to associate the commit with
a corresponding GitHub user. If the email address is not registered to a user
account, the commit is not linked to the account. For example, 15 repositories
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belonging to Kevin Incorvia (username incorvia) contain commits linked to
the email address Kevin Incorvia <incorvia@Kevins-MacBook-Air.local>, but
they are not associated to user incorvia because the email address is not associ-
ated with that user. Furthermore, the email address is more likely a computer
username rather than an actual email address. We could speculate that this is
due to using a git client, which pulled the GitHub user’s username and the
host name of their machine to combine it into an email address, rather than
asking them to enter an email address, as is the case of using the command line.
In any case, if one were to ask for the activity associated with user incorvia,
these commits would not be included. A similar case is the email address
being empty or invalid. For example, the repository TrinityCore/TrinityCore
contains commits by the email address megamage <none@none>. These com-
mits are not associated with any user—GitHub’s interface does not even show
a committer section while displaying the details of the commit and its API
shows null as the author/committer). The impact of this association of emails
to commits is four-fold.

– Not all committers or authors of commits are registered GitHub
users. By December 2014, we had identified 2.5M registered users and
0.6M email addresses that could not be associated to registered users (we
refer to these email addresses as non-registered users); 84.4% of commits
(65.2M) were performed by registered users and 15.6% (12.1M) by non-
registered users. Pull requests, issues and their comments can only be made
by registered users.

– A small number of users have commits that predate the creation
of their GitHub user account (1.5%, 33,227). For example, Linus
Torvalds joined GitHub on September 3, 2011, but has commits associated
with his user account as early as September 4, 2007.

– A committer can make a commit appear as coming from an-
other user by using one of the other user’s email addresses.
For example, the commit 042343a09967445753b174b0b05c6ef3cfcf7f93 in
the repository aaronraimist/public shows Aaron Raimist <torvalds@linux-
foundation.org> as its author and committer, yet the commit is associated
with Linus Torvalds and not with Aaron Raimist (Aaron is also the owner
of the repository where the commit was found). This issue is probably rare
and is difficult to identify.

– It might be necessary to perform email unification to fully iden-
tify the activity of each user. While GitHub allows a user to have
multiple addresses associated with their account, the user must associate
all their addresses. However, not all users have registered all the email ad-
dresses they have used. For example, Linus Torvalds has commits in GitHub
with 10 email addresses (from the Linux Foundation and the Open Source
Development Labs) that are not associated with his GitHub account. They
have been used in 17,460 of his commits in GitHub, while his GitHub ac-
count has 19,780 commits associated with it. In other words, 47% of Tor-
valds’ commits in GitHub are not associated with his user account. To
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quantify this effect empirically, we devised the following experiment. For
each project, identify persons who commit with two different email ad-
dresses (the same name, but two different email addresses) and their name
contains at least two words. The assumption is that for each project there
is only one person with a given firstname-lastname combination. In other
words:
– Select committers who have a name with at least one space in between.

This step selects committers with at least two words in their name
(e.g. Linus Torvalds) and avoids matching people who share the same
firstname or lastname (e.g. David).

– For each of these names, count how many email addresses they used in
a project. If the user is registered, we use their preferred email address
for the commit. If the user is not registered, we use the email address
in the commit.

Note that this method is likely to underestimate duplicated emails per
user since there may be emails that lack a name, or their name may only
contain one word, or a person uses different ways to write their name (e.g.,
J. Smith and John Smith).
We found that only 30.8% (664,850) of registered GitHub users have two or
more words in their name, and 17% of them (90,828 users) have at least one
email address that is not associated with their username in the same project
(median of 2). These email addresses have committed 2.09 million commits
(2.7% of all commits). This number, however, corresponds to 22.1% of
commits by non-registered committers. In other words, it is possible to
associate approximately 1/4 of commits by non-registered committers to
their corresponding GitHub user. This effect seems to be small, but it
shows that a significant proportion of users have identities that have not
been unified.

Peril Avoidance Strategy: For empirical studies that need to map activity
to specific users, use heuristics for email unification to improve the validity of
the results.

Peril XI: Only the user’s public activity is visible

When we take a closer look at the activity of registered users, we notice
substantial inactivity. Before concluding that GitHub users appear to be gen-
erally inactive, however, we need to keep in mind that we can only see public
activity (actions that take place in public repositories).

Let us focus on the commit as the basic unit of activity on GitHub. 97% of
the time, the committer and the author are the same person. Hence, for this
analysis we consider them equivalent and look only at the committer field to
estimate commit activity.

We found that out of the registered users on GitHub, 53.2% do not have a
single public commit. This population can be further divided into two parts:
30% of the registered users do not have a public repository either, while the
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remaining 23.2% have repositories but no public commits. These repositories
fall into two categories: empty repositories (e.g., used for testing) and forks
that have no activity.

The remaining 46.8% of registered users (1.04 million) have at least one
commit. As shown in Figure 6, the distribution of commits per user is highly
skewed: the median is 10 commits with an average of 62.4 commits. The in-
equality in the number of commits per registered users is substantial (see
Figure 7): 50% of the commits have been performed by 3.2% of registered
users, and 25% by 0.6% of them. This is mainly due to the fact that some
registered users appear overly active with a very high number of commits.

However, considering only commits as a measure of activity excludes users
who are active in other ways. 24.4% of registered users who do not have any
commits have submitted issues or participated in discussions around issues
or pull requests. This shows that there is a subset of GitHub users who do
not publicly develop code (they could have private repositories), but are ac-
tively contributing to GitHub repositories by identifying bugs, submitting new
feature requests, reviewing code or simply providing guidance to developers.

Peril Avoidance Strategy: This peril is unavoidable when using data from
public Websites—acknowledging this partial view in the discussion of results
and replicating a study in other contexts can help reduce its impact.
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Fig. 6 Cumulative ratio of registered users that have n commits. 50% of users (0.52 million)
have less than 10 commits and only 10% (0.1 million) have more than 50 commits.
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Fig. 7 Lorenz curve showing that most commits by registered users are made by a small
proportion of them. E.g., 50% of the commits by registered users have been performed by
3.2% of them.

4.8 GitHub is an Evolving Entity

GitHub is not operating as an archive of software development activities for
research purposes; its goal is to provide “powerful collaboration, code review
and code management for open source and private projects.”

Peril XII: GitHub’s API does not expose all data

While the repositories hosted in GitHub are continuously evolving, GitHub
reports only their current state (via its API). It does not report the historical
events that shape the current state of any repository. This results in several
challenges for researchers:

– GitHub does not provide an API to retrieve all events. GitHub
has created APIs to list many of its entities (such as users, repositories and
commits) and events (such as opening or closing issues, or pull requests).
However, it does not make them all available. For example, GitHub does
not expose pushes to a repository, the creation of releases, clone operations
or when a repository is made public. Some of these events are available
in the events API of a repository, but this API has the limitation of only
listing the last 300 events.
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– Not all events are reported with a timestamp. In particular, the APIs
for subscriptions and “stars” do not return the time when such actions were
initiated.

– Tracking renamed entities. A renamed repository keeps all its in-
formation under the new name (including its forks). GitHub will redi-
rect the URLs of renamed repositories, but it will not do it for API re-
quests. For example, the repository anders9898/jekyll was later renamed
to anders9898/zzz. The URL https://github.com/anders9898/jekyll
redirects to https://github.com/anders9898/zzz, but the API request
https://api.github.com/repos/anders9898/jekyll returns “Not Found”.
In the case of users, there is no way to know that a user has been renamed.
In this case, both the URL and the API requests for the old name will fail.

– Deleted entities. When a repository is deleted, all of its events and meta-
data are lost, but the network of repositories that were forked from it re-
main untouched; one of its forks will be chosen as the “root” of the rest
of the forks. From this point on, GitHub will report the deleted reposi-
tory as “Not found”. Similarly, when commits are deleted, GitHub has no
mechanism to inform that certain commits were deleted from a repository.
Finally, once a user is deleted, all information regarding them (including
the fact that they were a GitHub user) is lost.

– Making a repository private causes it to appear as if it were
deleted. Similar to when a repository is deleted, GitHub will report such
a repository as “Not found”. In this case, its forks will remain public and
one of them is chosen as their root.

– Rebased commits. When commits are rebased (one or more commits
changes its metadata, or are modified and/or combined into new commits)
the old commits disappear from the repository and are replaced by the
new commits. GitHub’s events API does not document commits that are
removed or modified in a push; it only lists the commits that are added
and the head of the branch before and after the commit. Any request for
the old commits in the repository will result in a “Not found” message. The
commits that are deleted or rebased in one repository might still exist in
another if they have already been propagated there.

– Propagation of commits. GitHub tracks the movement of commits be-
tween repositories only when commits are merged using a pull request and
those commits have not been rebased or deleted after the merge. In this
case, the merged pull request will document what commits were merged,
including the source and destination repositories. If the merge was per-
formed outside GitHub, then GitHub has no means of knowing what the
true source of the commits was. For example, assume Sally creates a fork
F of repository A and then clones it to her computer. Next, she “pulls”
changes from another fork G and then pushes the commits to her GitHub
fork F . Under this scenario, GitHub has no means of knowing that the new
commits in her repository came from G. If, on the other hand, there was a
pull request from G to F and Sally merges it, then GitHub will know that
those commits were moved from G to F .
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Peril Avoidance Strategy: Obtaining data from one of the services which
archives data from the GitHub API (like ghtorrent) can help avoid this peril.
However, researchers should be aware that such services contain their own
assumptions regarding the collected data.

Peril XIII: Github is continuously evolving

Over time, GitHub has changed some of its features and interface. For ex-
ample, GitHub’s “watch” feature was originally intended to be used by those
who wanted to receive notifications regarding activity (commits, pull requests
and issues) for any repository of their choosing. In August 2012, GitHub de-
cided to improve their notification system (Neath, 2012). The first change was
the introduction of “starring”. “Starring” a repository is equivalent to book-
marking it. Any previously “watched” repository became a “starred” repository,
and the old notification system surrounding “watchers” changed to an opt-out
subscription of events notification system (a person with commit privileges
to a repository automatically “watches” the repository). As a way to maintain
backwards compatibility with external applications that used this information,
GitHub currently returns the list of “starred” projects under its Watched API
(e.g., /users/:user/watched). This introduces two potential problems for re-
searchers. First, the meaning of “watchers” is different before and after August
2012. Second, there is a dissonance between GitHub’s interface and its API:
“Watchers” are returned using the Subscriptions API, and “stars” (those who
have “starred” a repository) are returned via the Watched API.

More recently (November 2014), GitHub silently disabled the ability to
retrieve repository collaborators for a specific repository. The only way to
retrieve this information now is to query and keep track of the live event
stream for a particular repository or sets or projects.

Both the above changes had a direct impact on the API. There are also
frequent changes to the GitHub interface that do not leave an API footprint,
yet they have the potential of changing user behavior. As an example, the issue
tracking system in GitHub was improved significantly on July 28, 201410.
The interface changes related to improving search and filtering, showing a
timeline of issue-related activities (such as assigning labels, changing issue
names and adding comments) and improving the editing of milestones and
labels for issues. Although the user data created and stored was not affected,
researchers should still keep track of when the GitHub interface changed and
what the improvements were. Capturing and measuring the actual impact of
interface changes on user behavior would be a separate research undertaking
as it is beyond the scope of this paper. However, we want to keep researchers
alert that patterns seen in the data could be explained by accounting for
changes in the interface, reflecting changes in user behavior, even if they were
not captured in the API.

10

urlhttps://github.com/blog/1866-the-new-github-issues
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Table 4 Percentage of projects susceptible to more than one perils. The table is read as:
“From the repositories that are susceptible to peril x (column) Y% are also susceptible to
peril z (row)”. We only include perils whose effect can be quantified. The table is valid for
January 2014 (total repository population: 5,397,054).

Peril Number of repos P I P II P III P V P VI P VII P X
P I 700,314 — 100 100 100 100 100 100
P II 156,328 22 — 24 12 10 19 14
P III 587,453 83 93 — 78 0 70 70
P V 117,232 20 12 19 — 28 25 0
P VI 58,023 8 3 0 11 — 8 15
P VII 464,426 66 70 71 59 65 — 52
P X 171,780 25 15 20 42 42 37 —

Peril Quantification method
P I Repositories that have forks.
P II Of the repositories in P1, those that have less than 6 commits.
P III Of the repositories in P1, those with no activity (commit, pull request, issue) in

Dec 2013.
P V Of the repositories in P1, those where only one user has commit access.
P VI Of the repositories that were active in Dec 2013, those that only had commit

activity.
P VII Of the repositories in P1, those that never received a pull request (any time).
P X Of the repositories in P1, those featuring commits belonging to non-users (fake

users).

Peril Avoidance Strategy: Understand how both the GitHub API and the
Website have evolved over time. Changes to the Website are often posted to
the GitHub blog11, but this is not guaranteed.

4.9 Relationship between perils

It is possible for one project to be subject to more than one perils. To calculate
the extend this can happen in our dataset, we calculated the pairwise appear-
ance of the perils in our dataset. More formally, for each peril PA in the set of
perils P = {P1, ..., P10}, we calculated a list of projects LPA which this peril
may affect. Then, we examined whether each peril TB in the set T = P \{PA}
also affects the projects in LPA and therefore came up with a second project
list LTB

PA
. The ratio of projects in LPA that are affected by both perils PA and

TB is |LPA \ LTB
PA

|/|LTB
PA

|. We only did this for perils that could be quantified
given our dataset. The results along with the quantification method can be
seen in Table 4.

Overall, we can see that there is a significant, but not absolute, overlap
among the perils as they manifest in the projects in our dataset. Peril III
(most projects are inactive) seems to be strongly related with most other perils,
while Peril VII (most projects do not receive a pull request) has significant
overlap with perils related to project activity. Peril I is naturally perfectly
correlated with all other perils as the population samples were drawn after

11
https://github.com/blog/category/ship
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Peril I was evaluated. In light of this, it is interesting to note that 83% of the
forked repositories (potential projects) were inactive in the month prior to our
dataset snapshot while 66% never received a pull request (therefore, the forks
did not contribute back).

What is perhaps more interesting about peril overlaps is that when read in
reverse, they provide us with simple guidelines to guide project selection for
research. While several rules can be extracted, we believe that the following
should be part of any effort wanting to examine healthy projects.

1. Choose repositories that have forks.
2. From those remaining after Step 1, exclude repositories that were inactive

for a predefined period prior to experimentation.
3. From those remaining after Step 2, exclude repositories that have never

received a pull request.

The remaining repositories can then be filtered according to further criteria,
for example number of stars (popularity) or programming language.

5 An Analysis of the MSR 2014 Mining Challenge

In the MSR 2014 Mining Challenge (Baysal and Gousios, 2014), researchers
were given a subset of the ghtorrent dataset to analyze and derive new in-
sights. The competition resulted in nine accepted papers. In view of the perils
presented, we analyzed the dataset and accepted papers to determine if any
of our perils might have posed potential threats to validity to the results pre-
sented in these papers.

5.1 The Dataset

The organizers of the Mining Challenge decided that the entire ghtorrent
dataset was too large. Instead, 90 repositories were selected as follows: for
each of the top 10 programming languages (including Javascript, Java and
other popular languages), the top 10 most active repositories in terms of pull
requests processed in 2013 (up to September 2013) where initially selected. The
original selection was then hand-cleaned to remove repositories that where not
software development ones.

Below we discuss how the identified perils could have an impact on insights
derived from this dataset.

Peril I A repository is not necessarily a project: The data contains
90 projects, but unfortunately, the schema of the dataset refers to a repository
as a “project” and it does not include an entity for “project”. Projects must
be inferred by recursively traversing the forked_from field of the “projects”
table to identify the project a repository belongs to. However, one repository
could not be linked to its project (xphere-forks/symfony).
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Peril II Most projects have low activity: There are 3 projects with
less than 100 commits, while 3 have more than 40,000 commits; 10 repositories
account for 50% of the commits.

Peril III Most projects are inactive: The impact of this peril is small:
only 4 repositories were inactive in the last 6 months. In contrast, 65 reposi-
tories had been active in the last week and 71 in the 2 weeks before.

Peril IV Many projects are not software development: The impact
of this peril is also small: one repository was a personal Website (vinc/vinc.cc),
while another one is a book on R programming (mavam/stat-cookbook). An-
other is a collection of icons (FontAwesome/Font-Awesome).

Peril V Most projects are personal: One of the projects only had
one committer (vinc/vinc.cc), and one had three committers (mavam/stat-
cookbook). Again, the impact of this peril is small.

Peril VI Many active projects do not use GitHub exclusively:
jquery/jquery, mono/mono, ServiceStack/ServiceStack, django/django, clo-
jure/clojure do not use GitHub for issues. For example, Clojure uses Jira—this
is where it suggests non-regular contributors should submit patches instead of
GitHub. Jquery hosts its own bug tracking system at bugs.jquery.com. Mono
uses bugzilla www.mono-project.com/Bugs. At least one repository is a mir-
ror (TTimo/doom3.gpl) with incomplete development history; it was imported
from a release of the game.

Peril VII Few projects use pull requests: In this dataset, the majority
of the projects use pull requests: 88 of the 90 repositories. The median number
of pull requests per project is 393. However, 3 repositories account for 34%
of the pull requests (mxcl/homebrew, rails/ralis and symfony/symfony), and
7 repositories account for 50%.

Peril VIII Merges only track successful code: This is an overarching
peril inherent in GitHub data due to the way GitHub reports merged pull
requests and the commits they contain.

Peril IX Many merged pull requests appear as non-merged: Some
projects do not close many of their pull requests using the GitHub “Merge”
button. Instead, they do it via commits in their local repositories. One project,
mxcl/homebrew, poses an important threat to validity if we assume pull re-
quests that are not marked-as-merged were not actually merged. This project
is the one with the most pull requests (it accounts for 17% of pull requests in
the dataset) and only 0.9% them are marked as “merged”. However, as part of
their development process they close pull requests via the log of a commit. We
found (Gousios and Zaidman, 2014a) that 52% of pull requests had actually
been merged (6,753 pull requests in the MSR dataset were actually merged).
django/django also does not always close the pull request via the “Merge”
button. In that case, we found that 819 pull requests had been merged (41%
more, for a total of 63%, compared to 23% found in the MSR dataset). In
Bukkit/CraftBukkit, 23.8% of commits were merged in commits only (274).
If we were to include these 7,846 pull requests as merged, the percentage of
merged pull requests grows from 45% to 55% for the entire dataset.
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Peril X Not all activity is due to registered users: The impact of
this peril is marginal: only 1.1% of committers in the dataset are not registered
users.

Peril XI Only the user’s public activity is visible: This is an overar-
ching peril inherent in GitHub datasets due to the fact that they contain data
from public repositories.

Peril XII GitHub’s API does not expose all data: Some of
the projects in the dataset have moved and are no longer active. The
root repository of homebrew was renamed from mxcl/homebrew to home-
brew/homebrew, although all the information was moved and is still avail-
able. Both mangos/MaNGOS and TTimo/doom3.gpl are dead. In the case
of mangos/MaNGOS, the main trunk of the repository has been scrubbed
of source code and moved to cmangos/mangos-classic, but the pull requests
and issues of the old project were not moved to the new one. The author of
TTimo/doom3.gpl keeps the repository for archival purposes; its development
appears to have moved to dhewm/dhewm3. Other repositories have moved:
facebook/php-sdk moved to facebook/facebook-php-sdk and no longer exists (it
was not renamed). The watchers table of the dataset contains a field created_at
but this field corresponds to the date in which the watcher was discovered by
ghtorrent, not the date the person became a watcher (this information is not
exposed by GitHub’s API, as described in Peril XII GitHub’s API does not
expose all data).

Peril XIII Github is continuously evolving: In the MSR dataset,
watchers correspond to today’s “starrings”. This is because “watchers” are now
a subscription mechanism, as explained in section 4.8.

5.2 The Papers

In light of the issues we have outlined above, we can illustrate the use of the
perils for identifying potential threats to validity or offering alternative expla-
nations. We use select papers published in the MSR Challenge of MSR’14 as
examples and comment on some of the assumptions these papers made, con-
trasting them to the perils discussed earlier. We note that we are not making
claims as to the validity of the results in the papers since we have not repli-
cated the studies; we leave that for future studies that attempt to replicate or
extend those studies.

In Sheoran et al (2014), we looked at watchers on GitHub and assessed
if and when watchers become contributors and what types of contributions
watchers make to the repositories they watch. One of the research questions
involved investigating how long it takes for watchers to contribute to the repos-
itory, in any form; this was done through using the created_at field of Watch-
ers. As mentioned in the previous section, the created_at field corresponds
to the date ghtorrent recognized a user as a watcher, not the date the user
became a watcher. If ghtorrent did not capture these watcher events as they
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occurred, the difference in timings can have an effect on the time the study
concludes it takes for a watcher to contribute to a project.

Rahman & Roy (Rahman and Roy, 2014) analyzed GitHub pull requests.
The study compared successful and unsuccessful pull requests against factors
such as discussion items, pull request history, and selected project and de-
veloper characteristics. The goal of the comparative analysis was to identify
factors that play a role in the success or failure of pull requests. The analysis
considered merged pull requests as successful, while marked-as-non-merged as
unsuccessful. As described above (Peril IX Many merged pull requests appear
as non-merged applied to the MSR Data set), a significant number of pull
requests are merged but not marked-as-merged (e.g., django/django, Bukkit
CraftBukkit and mxcl/homebrew). This issue could have impacted the results
in the paper; a different number of successful and unsuccessful pull requests can
lead to different conclusions about the influence of the identified factors. For
example, the peril could explain the outliers in Figures 5 and 6 and also why
languages like Ruby (mxcl/homebrew) and Java (Bukkit/CraftBukkit) have a
low ratio of marked-as-non-merged pull requests.

Padhye et al. (Padhye et al, 2014) also analyzed GitHub pull requests op-
erating under the same assumption that not-marked-as merged pull requests
were non-merged. The study distinguished between core, external and mutant
commits based on whether they were merged in the base repository. Respec-
tively, the study labeled committers according to their commits to identify
communities and characterize them. As we noted above, the actual proportion
of merged pull requests in the dataset changes if we count pull requests that
are not marked-as-merged as merged, going up from 45% to at least 55%. This
fact could have an effect on the set of commits that are marked as mutant in
the study and potentially also reduce the number of committers labeled as
mutant.

Matragkas et al. (Matragkas et al, 2014) analyzed user activity in projects
to cluster users into roles, investigating the structure of the ecosystem of open
source communities on GitHub. In the study each repository is considered and
referred to as a “project", regardless of whether it is a base repository or a
fork of one (see Table 1 in Matragkas et al (2014)). The rationale behind this
choice is that it is hard to determine if work done in a fork is collaboration
with other repositories or independent work that will not be contributed to
other repositories; hence it is safer to consider them as separate12. Some forks
will indeed not contribute back to the base repository, but it is difficult to
determine if they will not. Peril I A repository is not necessarily a project
could influence the results of the study, since considering some or all forks as
part of a larger project would likely create larger clusters. Furthermore, the
analysis counted the number of issues and issue comments per user. Under
Peril IV Many active projects do not use GitHub exclusively, the size of the
clusters may be underestimated if projects are using an issue tracker that is
external to GitHub.

12 The authors clarified this view in private communication.
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The examples above demonstrate the potential threats to validity that the
perils pose. This does not mean that the studies we critiqued (or others that
use the same data) are flawed. Rather, it highlights that there are issues that
need consideration when processing the data and drawing conclusions from it,
and that need to be acknowledged in the discussion of a study’s threats to
validity.

6 Comparing perils between SourceForge and GitHub

Publicly available repositories are attractive data sources for researchers, but
not without perils. There have been previous studies taking a critical look
into the quantity and quality of data on public sources, with the most notable
example being SourceForge. Over a decade ago, James Howison and Kevin
Crowston (Howison and Crowston, 2004) identified perils and pitfalls in mining
data from projects hosted on SourceForge. These perils related to three areas:
data collection, interpretation and analysis, and research design. In Table 5
we highlight the similarity of our conclusions.

Table 5 Comparison between perils identified in (Howison and Crowston, 2004) and our
study.

SourceForge perilous areas GitHub perils
Data Collection
- Spidering Data collection and summarizing relates to the
- Parsing GHTorrent dataset, explained in (Gousios, 2013)
- Summarizing and (Gousios and Zaidman, 2014b)
- Testing

Interpretation
- Cleaning dirty data P IV, P V, P VI, P X
- Skewed data P I, P II, P III, P VII, P IX
Research design

P VIII, P XI, P XII, P XIII

In this paper we have not concerned ourselves with data collection perils
because we used an already existing dataset, ghtorrent. In contrast, Howi-
son & Crowston constructed their own dataset and, therefore, came across
challenges and tradeoffs on how to mine the data in the first place, before an-
alyzing it. The same applies to other studies that have used SourceForge data
(e.g Weiss (2005)). The assumptions and heuristics in ghtorrent are described
and assessed in previous work (Gousios, 2013; Gousios and Zaidman, 2014b).

Regarding the interpretation and analysis of data mined from SourceForge,
Howison & Crowston recognized two challenging sub-areas: cleaning dirty
data, and skewed data. In cleaning dirty data, similar to our conclusions,
the authors observed that manual checking is essential since there is a lot of
anonymous data (similar to our Peril X: Not all activity is due to registered
users) while for many projects SourceForge may be the “repository of record"



34 Eirini Kalliamvakou et al.

but not the “repository of use" (similar to our Peril VI: Many active projects
do not use GitHub exclusively). Our Perils IV and V (Many projects are not
software development and Most projects are personal) also relate to cleaning
dirty data, since repositories would require manual inspection to categorize
them properly.

Another peril in interpreting data from SourceForge (Howison and Crow-
ston, 2004; Weiss, 2005) is how skewed the data is, which has also been our
observation after reviewing GitHub data. Researchers need to be conscious of
the data skewness and the fact that they will need to use screening variables to
get data that is relevant to and representative of the properties they want to
study, but also that the use of screening variables will significantly reduce the
number of repositories and projects studied. We made the same observation
relative to five of our perils too, noted in Table 5.

Finally, Howison & Crowston suggested caution to researchers designing
studies using SourceForge data; the website provides a few easy-to-compute
variables calculated for projects (the authors call them “ready-made"), but
researchers use them to draw conclusions for complex theoretical constructs.
This is a validity threat in itself, complicated by the fact that different liter-
ature areas may use the same variables as proxies for different concepts. The
same caution applies in the case of GitHub data too. We also concluded that
the simplicity of metrics may hide dangers; the number of commits in a pull re-
quest, for example, can be a simple metric to calculate but, given that GitHub
does not report the intermediate commits that led to a merged pull request,
could be a problematic proxy for the effort that was put in a successful merge.
Perils XI, XII, and XIII also need to be taken into account in any research
design so that conclusions do not include misinterpretations.

Surprisingly, the perils identified over ten years ago about the interpreta-
tion of data mined from public repositories and the research design of studies
that build on that data are equally relevant today. Even though the data
sources may have changed, researchers still have to be careful in how they ex-
tract data, how they analyze and interpret it, and how they make conclusions
about software development.

7 Threats to Validity

Our study has several limitations and threats to validity. The exploratory
survey had a relatively low number of participants from a biased and self-
selected population. While it motivated us to investigate the perils in more
detail, we can draw no further conclusions from it. Our manual exploration of
434 projects illustrates the variety of uses of GitHub, but we do not generalize
our results to other projects.

This study was based on analysis of the ghtorrent dataset, and there-
fore, the reliability of our work depends partly on the reliability of the
ghtorrent dataset. ghtorrent is a best-effort approach to collect data from
the GitHub api and previous work (Gousios, 2013) analyzed the reasons why
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ghtorrent cannot be a full replica of GitHub. The accuracy of the heuristics
to detect pull requests merged outside GitHub is detailed in (Gousios and
Zaidman, 2014b).

We mitigated these threats by triangulating quantitative with qualitative
data from surveys, interviews and manual inspections.

To ameliorate these threats, we provide a replication package for our study.
The package contains the results of our manual analysis as well as other data
and scripts used in this work. The ghtorrent data is publicly available13.

The replication package of this paper is available at http://
turingmachine.org/gitMiningPerils2014.

8 Discussion & Conclusions

The story told by mined data is not always the whole story. This has been a
finding in studies that assess the quality and completeness of data mined from
project archives, but also in rare cases where the mined data is compared to
qualitative evidence (Aranda and Venolia, 2009).

In this empirical study, we set out to critically look at the publicly available
data coming from GitHub and assess whether it is suitable as a data source
for software engineering studies. The data can be readily used to report on
several project properties. If a researcher seeks to see trends of programming
language use, type of tools built, number and size of contributions, and so on,
the publicly available data can give solid information about the descriptive
characteristics of the GitHub environment. However, using GitHub to synthe-
size information to draw conclusions about more abstract constructs needs
some consideration. We presented evidence of how assumptions about reposi-
tory activity and contents, as well as development and collaboration practices,
can be challenged. We recommend that researchers interested in performing
studies using GitHub data first assess its fit and then target the data that can
really provide information towards answering their research questions.

Some potential perils manifest relative to the repository activity. One of the
biggest threats to validity to any study that uses GitHub data indiscriminately
is the bias towards personal use. While many repositories are being actively
developed on GitHub, most of them are simply personal, inactive repositories.
Therefore, one of the most important questions to consider when using GitHub
data is what type of repository one’s study needs and to then sample suitable
repositories accordingly.

While we believe there to be a need for research on the identification and
automatic classification of GitHub projects according to their purpose, we
suggest a rule of thumb. In our own experience, the best way to identify active
software development projects is to consider projects that, during a recent
time period, had a good balance of number of commits and pull requests, and
13

http://ghtorrent.org/downloads.html
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have a number of committers and authors larger than 2. The number of issues
can also be used as an indicator, but not all active projects use GitHub’s issue
tracker, such as several Mozilla projects14. Outliers, especially those with a
very large number of commits per committer, point towards automatic bots.

When looking at any specific project, researchers need to keep in mind that
other repositories might exist in the project—some of them working towards
a common goal and some possibly being independent versions that will never
contribute back. Based on our work, we believe a simple way to determine
whether a repository actively works with another might be to identify if com-
mits have flown from one to the other in both directions, but this strategy
requires further validation.

Other potential perils manifest relative to the users and their character-
istics. User actions might be taking place elsewhere and recorded as activity
on GitHub, and due to non-unification of email addresses, not all of a user’s
activity is necessarily attributed to them. Both facts can distort the image
researchers form of user activity and, therefore, potentially influence their
conclusions. It is important to look more closely at the users’ characteristics
in light of the presented perils before drawing inferences and/or be aware of
the potential threats to validity.

Apart from an exciting data source, GitHub is also an evolving entity. Its
range of features and the integration between them changes frequently, mean-
ing that the api also changes. This cannot be considered a flaw or attributed
to GitHub as such; it simply puts more responsibility on researchers to remain
aware of changes and factor them in their analysis. The same applies to infor-
mation that is part of GitHub’s functionality, yet reported partially or not at
all.

One last conclusion point is to advocate for complementing quantitative
studies with qualitative data. By all evidence we have presented, there are
shortcomings in the data that can pose a danger to the conclusions of any
rigorous study. Especially given Peril XII GitHub’s API does not expose all
data, researchers may not even be able to have direct access to information that
could inform their interpretation of project or user activity. Getting additional
qualitative input regarding projects and users can give more confidence in the
assumptions that researchers make. For example, surveys that solicit comments
from participants could be a solid information source.

We showcased the potential impact of the perils in a familiar and appropri-
ate setting: the MSR 2014 Mining Challenge. The take-away message is that
perils in the data equals perils in assumptions equals perils in results. We pro-
vided examples from our own and others’ studies in the hope that researchers
that continue to mine GitHub will be cautious of the underlying assumptions
and informed about potential validity threats.

GitHub is a remarkable resource. It continues to grow at an accelerated rate
and its users are finding innovative ways to exploit it. Nevertheless, software

14
https://github.com/mozilla
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development is flourishing in the open within GitHub’s infrastructure and will
continue to be an attractive source to mine for research in software engineering.
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