
Measuring Developer Contribution from Software Repository Data

Eirini Kalliamvakou, Georgios Gousios, Diomidis Spinellis, Nancy Pouloudi
Department of Management Science and Technology

Athens University of Economics and Business
Athens, Greece

ikaliam,gousiosg,dds,pouloudi@aueb.gr

Abstract

Our work is concerned with an enriched perspective
of what constitutes developer contribution in software in-
frastructures supporting incremental development and dis-
tributed software projects. We use the term “contribution”
to express the combination of all the actions a developer
has performed during the development process and propose
a model for calculating this individually for developers par-
ticipating in a software project. Our approach departs from
the traditional practice of only measuring the contribution to
the final outcome (the code) and puts emphasis additionally
on other activities that do not directly affect the product
itself but are essential to the development process. We use
the Open Source Software (OSS) context to take advantage
of the public availability of data in software repositories.
In this paper, we present our method of calculation and its
system implementation and we apply our measurements on
various projects from the GNOME ecosystem.

1. Introduction

An important aspect of all engineering principles is the
assessment of the contribution of individuals that work on a
project. Contribution assessments are performed to monitor
the rate of project development, identify implementation
bottlenecks and isolate exceptional cases, while the results of
contribution assessments can help with project planning and
future estimations. An open issue linked with contribution
assessment is the definition of what contribution is in a
particular context and also the selection and application of
the appropriate measurements.

In software engineering, contribution assessment entails
the measurement of the contribution of a person in terms
of lines of code (LOC) or function points towards the final
development of a software project [Kan, 2003]. This practice
clearly focuses on the contribution to the final outcome of
the project (i.e. the source code). To this end, only LOC
is regarded as measured contribution. In recent years, how-
ever, the shift towards modern development practices and
the proliferation of software and project management tools
challenge this perspective. A software developer today is not
only required to write code, but also to communicate and

coordinate with colleagues effectively and to use a variety
of tools that produce and modify code with minimal input
from his or her side. This change has become more apparent
with the emergence of Open Source Software (OSS).

In this respect, a developer contributes to a wide range of
activities both involving the process and the product. Such an
enriched perspective on a developer’s contribution requires
all individual actions to be taken into account. In this paper
we discuss and measure contribution in this respect; a com-
bination of all the actions a person has performed during the
software development process weighted for their significance
to the specific project. Our practice, then, encompasses the
contribution to the final outcome as well as to the process
that generated it.

This paper introduces a new model for measuring de-
veloper contribution, assuming that a more comprehensive
image can be formed about a developer’s contribution by
combining actions directed towards the product itself and
the process that yields it. For implementing our contribution
calculation algorithm we have combined our proposed model
of calculation with repository mining techniques. We provide
a visual representation of the results, thus offering rich
information regarding the total contribution per developer
and how it is divided among different actions during the de-
velopment process. Our initial observations set the basis for
discussing contribution to multiagent, distributed software
projects based on this new kind of information.

2. Existing work

We use the term “contribution” to express the combination
of all the actions a developer has performed during the
development process. In today’s changing software devel-
opment environment a developer’s work items have been
enriched with the addition of further activities that benefit
the whole project, and this reality needs to be reflected.
Contribution, as a notion, encapsulates other notions that
have been frequently used in the literature to express activity,
participation, effort or performance. In these cases, we see
that although the name changes, the same concept is being
described and the same measurement is used.

Productivity is a reoccurring discussion in all processes
that involve inputs and outputs. In economic terms, pro-

ductivity is the ratio of output to input, the output of
a process divided by the effort required to produce it.
In [Walston and Felix, 1977], programmer productivity is
defined as the ratio of the delivered source lines of code
(DSL) to the total effort in man-months (MM) required to
produce the delivered program. Input and output in soft-
ware engineering processes are frequently addressed with
output usually measured in LOC [Walston and Felix, 1977],
[Asundi, 2005], [Maxwell and Forselius, 2000]. As the LOC
metric cannot be determined safely before the end of the
project, function point analysis usually complements it.
Input, on the other hand, is not as a straightforward notion
in software development and its calculation requires further
explanation.

In a software project there are several assets that receive
input [Hertel et al., 2003], [Koch and Schneider, 2000],
leaving trails of the actions of participating developers.
Participation and performance of developers, which can
be calculated from their input, are frequently discussed
in productivity contexts. Again, although it is noted
that OSS developers provide many different kinds of
services to their projects, participation is measured in
terms of number of source code contributions, showing
a complete focus on participation to the outcome, while
performance is mainly expressed in terms of rank
advancement [Roberts et al., 2006].

The shortcomings of just measuring LOC to account for
a developer’s significance to a project have been discussed
by researchers [Amor et al., 2006]. Aiming to estimate cost
in the OSS context, Amor et al. propose that developer
activity should be calculated. Although this is usually done
by means of LOC, they stress that it is necessary to enhance
this by a more detailed description of activity that accounts
for actions other than simply writing code. This is a first
attempt to move from focus on the outcome to examining
the whole process. Cost is considered a function of effort,
which in turn is considered a function of activity and
suggested sources of information include CVS repositories,
mailing list archives and bug tracking systems. In this
regard, Amor et al. differentiate from previous literature that
regards participation of developers simply as the addition
of LOC [Koch and Schneider, 2002], [Mockus et al., 2002],
[Mockus and German, 2003].

Today, with software development following more ag-
ile practices, developers in a project contribute to more
project assets than simply writing code. Agile software
development shares similarities with the OSS environ-
ment [Warsta and Abrahamsson, 2003] and here developers,
too, have a multifaceted presence and contribution to the
project, not only at the level of the code artifact but also
in more supporting activities. Especially OSS projects lend
themselves well to discussions and calculations of contri-
bution due to the wide variety of publicly available data.
To this end, we propose a definition and measurement of

developers’ contribution that accounts not only for the LOC
that they have produced but also their support via posting
to mailing lists, submitting bug reports and building wikis.

3. Our approach

Our work is concerned with the measurement of de-
veloper involvement and activity in the face of incremen-
tal and distributed development practices. The model we
are building exploits the availability of publicly accessi-
ble software repositories to perform measurements and its
system implementation can run fully automatically with
no human intervention. The current paper extends previous
work [Gousios et al., 2008], both theoretically as well as
technically. Specifically, we present an updated method of
calculation and a more detailed table of actions. Also, we
have applied our methods and measurements to generate
results.

Our model departs from the classic measurement practices
as it does not consider the added lines of source code as
the only contribution metric. This is a deliberate choice
that we believe better reflects how software is developed
using modern development methodologies, in the context
of which, an important portion of development time is spent
on communication and manipulation of development support
tools. Our model does not neglect the importance of source
code either; we still use the lines of code which we have
represented via three actions (CADD, CREM, CCGN), but we
also combine them with the developers’ other actions on
the project. We argue that this combination provides a more
complete image of how much a developer has contributed to
the software development process, not accounting only for
writing code.

To identify which actions can be classified as contribu-
tion, we follow a hierarchical, top-down approach: we first
identify the project assets that can potentially receive contri-
bution and then analyze the actions that can be performed on
each of the identified assets to see if they constitute a contri-
bution or not. The actions have been initially identified intu-
itively and through personal experience and based on related
literature [Hertel et al., 2003], [Koch and Schneider, 2000],
[Amor et al., 2006]. After consulting with experts the table
is updated and refined.

In Table 1, we present a non-exhaustive breakdown of
actions that can be performed on the identified project assets.
Most actions are self-explanatory and relatively easy to mine
from each asset repository using simple heuristics or external
tools [Spinellis, 2006]. Each action is a measurable entity
whose value is updated after the corresponding project asset
has been updated.

Not all actions have a positive effect on a project; for
example, a commit with an empty commit comment can
be considered as negative contribution. Furthermore, not all
actions have the same importance on the evolution of a

Table 1. Project resources and actions that can be performed on them. The Effect column denotes whether an
action has positive or negative impact.

Asset Action Id Effect
Code and
Documentation
Repository

Add lines of code CADD +
Remove lines of code CREM +
Change lines of code CCGN +
Commit new source file CNS +
Commit new directory CND +
Commit code that generates a bug CGB −
Commit code that closes a bug CCB +
Add/Change code documentation CAD +
Commit fixes to code style CSF +
Commit more than X files in a single commit CMF −
Commit documentation files CDF +
Commit translation files CTF +
Commit binary files CBF −
Commit with empty commit comment CEC −
Commit comment that awards a pointy hat CPH +
Commit comment that includes a bug report num CBN +

Mailing lists -
Forums

First reply to thread MFR +
Start a new thread MST +
Participate in a flamewar MFW −
Close a lingering thread MCT +

Bug Database Close a bug BCL +
Report a bug BRP +
Close a bug that is then reopened BCR −
Comment on a bug report BCC +

Wiki Start a new wiki page WSP +
Update a wiki page WUP +
Link a wiki page from documentation/mail file WLP +

IRC Frequent participation to IRC IFP +
Prompt replies to directed questions IRQ +

project; for this reason, we also specify weights that are
attached to each action.

We consider a project with a set of k developers (which
we shall call Developers throughout). Each one of them
can perform any of the n different actions to contribute to
a project. With each action i, we associate two functions,
ci : Developers → R and Ci : Developers → [0, 1].
ci(d) represents the total number of actions identified for
developer d with regard to action i, while Ci(d) is the
corresponding percentage, i.e., ci(d) divided by the sum of
the work that all developers did in this action:

Ci(d) =
ci(d)

k∑
j=1

ci(dj)

.

Since not all actions have a positive effect on the project,
we can group actions together and derive separate calcula-
tions for positive-effect and negative-effect contributions of
developers.

Furthermore, not all actions that constitute contribution to
the project have the same importance. For this reason, the
model also allows for weights to be attached to each action.
These weights will be specified independently of the model,

in order to reflect individual views regarding each action’s
significance to the whole project, for every different project.

We either use weights w1, . . . , wn ∈ [0, 1] with
n∑

i=1

wi =

1, or we may use arbitrary weights W1, . . . ,Wn ∈ R to
represent significance. If we use the weights wi, we compute
the total contribution of each developer d by

Ctot(d) =

n∑
i=1

wiCi(d),

while in the case that we use Wi, we compute the weighted
average:

Ctot(d) =

n∑
i=1

WiCi(d)

n∑
i=1

Wi

.

The model’s invariant is that for any i,
k∑

j=1

Ci(dj) = 1.

4. Model evaluation

In order to evaluate our proposed metric, we have
applied the Kaner and Bond metric evaluation frame-

Table 2. Metric evaluation according to the Kaner and Bond framework

Criterion Our Metric
Purpose Assess developer contribution in distributed working environments.
Scope A project developed by a distributed workgroup
Measured Attribute Degree of contribution to the development process
Attribute Scale Ratio scale
Attribute Variability There is no knowledge of the variability of the measured attribute prior to performing

the measurements
Metric Function The proposed metric counts and weights the number of actions on project assets. The

highest those counts are, the more a developer has contributed to a project in a positive
or negative manner (see section 3)

Metric Scale Ratio scale: The higher the contribution value, the more a developer has offered to the
project.

Variability of readings Some metric components are based on heuristics which may not work in certain cases.
This may affect measurements in non-foreseeable ways. Metric components showing
unstable results should be identified and excluded from the final version of the model.

Attribute and Metric Rela-
tionship

The metric generally captures changes in the attribute well. Metric components are
analogous to contribution, subject to variability. For 2 given developers in the same
project, d1 and d2, the equation c(d1) + c(d2) = c(d1 + d2) is always valid.

Side effects No side effects can be foreseen. As the metric takes into account a variety of factors
and it is automatically calculated it is difficult for developers to change their behavior
towards optimizing the metric without increasing their actual contribution.

work [Kaner and Bond, 2004]. Kaner and Bond propose
their framework to evaluate software metrics through the
measurement of which quality attributes can be captured
and described. The framework denotes that the metric should
possess certain properties in order to ensure that it fits the
purpose of describing the quality attribute.

Currently we use the proposed contribution metric in its
own merit but we see that it can be used also to explain
causal relationships involving contribution since it captures
well the scaling of the measured attribute. We use this as an
evaluation of our metric for the purposes of this paper. The
results can be seen in Table 2. In Section 7 we discuss how
we plan to verify our method of calculation.

5. Implementation and experiment methodol-
ogy

The model presented has been developed as a plug-in
to the Alitheia Core software evaluation tool. The Alitheia
platform is an extensible, open platform for software en-
gineering research [Gousios and Spinellis, 2009]. Alitheia
Core consists of a set of services, such as accessors to
project assets, continuous updating of monitored projects
and relational data storage, and it is extensible through the
use of plug-ins. Plug-ins can either implement basic software
metrics or combine the results from various project data
sources or from other plug-ins arbitrarily. Alitheia Core
stores plug-in results differentialy, by attaching them to
entities exported by its database. The system is designed
to perform in-depth analysis of thousands of projects on
a per repository revision basis and allows full automation
of the quality evaluation process after the initial project
registration. We used the Alitheia Core tool to preprocess the

 StoredProject

 name

 ProjectVersion

 project
 revisionId
 timestamp
 committer
 commitMsg
 properties
 sequence

n

1

 MailingList

 listId
 storedProject
 messages
 threads

n

1

 Developer

 name
 username
 aliases
 storedProject

n

1

 Bug

 project
 updateRun
 bugID
 status
 creationTS
 deltaTS
 reporter
 resolution
 priority
 severity
 shortDesc

n

1

 MailingListThread

 list
 lastUpdated
 messages

n

1

 DeveloperAlias

 email
 developer

n

1

n

1

 BugReportMessage

 bug
 reporter
 timestamp
 text

n

1

n

1

n

1

 ContribAction

 developer
 changedResourceId
 contribActionType
 total
 timestamp

n

1

n

1

n

1

n

1

 ContribActionType

 actionCategory
 actionType
 isPositive

n

1

Figure 1. Relationships between entities defined by the
Alitheia Core storage schema and those defined by the
contribution plug-in

full history of the source code repositories, the full mailing
list archives up to January 2009 and 3 years worth of bug
reports from 48 sub-projects of the GNOME project.

The contribution plug-in is implemented as a compound
plug-in, building on the pre-existing size metrics plug-in
to avoid re-implementing them. The contribution plug-in
is bound to three project entities, namely project versions,
mailing list threads and bug reports. This means that it
is automatically recalculated everytime the core system
encounters an updated version of either of the three entities.
The overall implementation is relatively straight forward:
the plug-in makes extensive use of platform services, for
example to recognize file types or to get threaded messages
in order of arrival, in order to analyze the actions that the
developer has performed on the affected resources.

The plug-in uses a custom table to extend the Alitheia
Core default schema in order to store its results. The storage
schema extention can be seen in Figure 1. For each identfied
action, the plug-in stores the affected resource identifier, the
developer identifier and also copies the timestamp of the
affected resource.

A crucial point of the implementation is the identification
of developer identities across the three data sources. In the
course of a project, developers use several emails to post
to mailing lists or to subscribe to bug tracking systems,
but usually can be uniquely identified by the name that
is attached to an email post or the user name for the
project’s SCM system. During the project updating phase,
Alitheia Core fills the Developer table in with all data
each updater knows or can infer from the raw data, namely
user names, {real name, email} tuples and emails for
source code, mailing lists and bug databases respectively. It
then applies a set of heuristics, such as various anagrams
of the developer’s name and approximate string matching
algorithms, to map developer names to SCM usernames.
Identity resolution is currently not very effective: out of
the 6137 unique usernames the system recognised for the
projects we evaluated, only 598 were fully resolved. For
this reason, we conducted all measurements on the set
of identities that have been matched only. We performed
manual inspection on a random set of matched identities to
ensure the validity of the matching.

6. Results and discussion

We have performed our measurements on 48 sub-projects
of the GNOME project. We have gathered data for 17 actions,
14 with positive effect and 3 with negative. Our data cover
the whole history of the project until January 2009 for
source code and mailing list-related actions, while we also
processed the bug reports for the last 3 years.

In Figures 2 and 3 we present the visual representation of
our results. This is a new type of information offered that
can be used for discussion of various aspects of contribution,

especially if combined with project-specific characteristics.
We have chosen to present 4 projects (GNOME Desktop,
GNOME-VFS, gedit and Tracker), where the percentage of re-
solved developers was greatest. For each project we can see
how the total contribution of each developer is distributed
among actions, accounting separately for positive-effect (up)
and negative-effect (down) contribution. In these diagrams
the information relates specifically to resolved developers.

Although our model supports action weights, for the
purposes of this paper we have made all our calculations
using equal weights of 1 for each action. As a result of
this decision on the one hand we lose information regarding
contribution in terms of significance to the project but, on
the other, we see more clearly how developers decide to
spread their contribution across different actions.

The view of contribution offered by these diagrams en-
ables us to make a series of observations. Firstly, we can
use them to focus on exceptional cases in a project and see
what pattern the specific developers portray. For example
we can see that in GNOME Desktop the developer with the
highest contribution in positive-effect actions has a very
low contribution in negative-effect actions. On the other
hand, in GNOME-VFS we observe that the highest ranking
developers in terms of positive-effect contribution also have
the highest negative-effect contribution. Such observations
might lead to different conclusions for each project, taking
into consideration its specific characteristics. For example, a
single developer in the GNOME-Desktop project has a high
score of binary file commits; judging from the fact that the
GNOME-Desktop project develops the user visible parts of
the desktop, a possible explanation could be that the specific
developer is a project artist that commits a large number of
image files. Also, in the GNOME-VFS project, we observe
that the developers who have done the most work, seem to
also have performed the largest share of big number of files
commits. This might be due the fact that the people that do
the most work are project leaders and therefore are those that
create branches of tags, which in turn makes them appear
to have commited the most files.

We can use this type of results also to discuss the nature
of the distribution of work carried out by developers. An
important observation is that, in this initial stage, there
doesn’t seem to be an exclusive predominance of one
action. Developers spread their contribution among several
actions relating to all aspects, not showing a high degree of
specialization.

More specifically, it is interesting to see that the three
actions relating to the traditional LOC (CADD, CREM, CCGN),
are not as dominant as would be expected. Indeed we see that
not all participating developers contribute to these actions
and that developers that do, also devote a substantial portion
of their work in other actions, too. This supports our argu-
ment that strictly measuring code only speaks for a fraction
of a developer’s contribution and that this information needs

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

1854
1855
1857
1866
1867
1873
1881
1894
1896
1911
1933
1935
1941
1948
1958
1962
1981
1990
1991
2010
2032
2046
2063
2075
2077
2083
2088
2099
2149
2151
2156
2183
2639
2806
2815
2849
2889
2905
3278
3283
7096
7147
7291
7347
7382
7413
7420
7427
7451

C
on

tr
ib

ut
io

n
po

in
ts

Developer Id

Positive contribution per developer broken down per action for project: Gnome-Desktop.

MST
MFR
MCT
CND
CNS
CADD
CCGN
CREM
CTF
CDF
CBN
CPH
BRP
BCC

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

1413
1417
1431
1448
1454
1455
1456
1469
1488
1489
1498
1511
1531
1541
1576
1578
1589
1594
1607
1694
1725
1737
1781
1782
1783
1800
1801
1840
1845
1847
1850
2061
2124
2171
2191
2209
2211
2225
2226
2241
2246
2253
2303
2330
2567
2600
2605
2609
2617
2620
2640
2646
2653
2783
2912
2927
3252
3317
3355
3371

C
on

tr
ib

ut
io

n
po

in
ts

Developer Id

Positive contribution per developer broken down per action for project: Gnome-VFS.

MST
MFR
MCT
CND
CNS
CADD
CCGN
CREM
CTF
CDF
CBN
CPH
BRP
BCC

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

1854
1855
1857
1866
1867
1873
1881
1894
1896
1911
1933
1935
1941
1948
1958
1962
1981
1990
1991
2010
2032
2046
2063
2075
2077
2083
2088
2099
2149
2151
2156
2183
2639
2806
2815
2849
2889
2905
3278
3283
7096
7147
7291
7347
7382
7413
7420
7427
7451

C
on

tr
ib

ut
io

n
po

in
ts

Developer Id

Negative contribution per developer broken down per action for project: Gnome-Desktop.

CMF
CBF
CEC

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

1413
1417
1431
1448
1454
1455
1456
1469
1488
1489
1498
1511
1531
1541
1576
1578
1589
1594
1607
1694
1725
1737
1781
1782
1783
1800
1801
1840
1845
1847
1850
2061
2124
2171
2191
2209
2211
2225
2226
2241
2246
2253
2303
2330
2567
2600
2605
2609
2617
2620
2640
2646
2653
2783
2912
2927
3252
3317
3355
3371

C
on

tr
ib

ut
io

n
po

in
ts

Developer Id

Negative contribution per developer broken down per action for project: Gnome-VFS.

CMF
CBF
CEC

Figure 2. Positive (up) and negative (down) action distribution for various project developers

to be combined with activity in other domains of the process.
We have also used our data to check whether a Pareto-like

principle applies to the set of projects that we have reviewed
so far. For this purpose, we have prepared a diagram
(Figure 4) that shows the total contribution percentage of
the highest-ranking 30% of developers in each project.

The Pareto principle states that for many events, roughly
80% of the effects come from 20% of the causes, and has
been found to apply to many software engineering processes
[Boehm, 1987] and artifacts [Louridas et al., 2008]. Used
for large sets of participants this can take the form of various
combinations (60-40, 70-30 e.t.c). In our case we can see
that for the set of all developers (both resolved and not), on
average 70% of contribution comes from 30% of developers.

7. Limitations and further research

One limitation of our research relates to possible validity
threats of the discussed methods. Firstly, our individual
methods of calculating activities are not the only ones avail-

able. We have reviewed alternatives and have chosen those
that are closer to our data types and organization. Although
these may not be considered optimum, they are commonly
applied to all projects and all involved developers, thus
rendering no consistency problems.

Secondly, we have used in our data sets only those
developers that we have successfully matched to all assets.
Currently, there is no process that leads to more accurate re-
sults than manual matching. Due to the lack of an automated
process and since manual matching is unlikely for such large
numbers, we have relied on heuristics. Our methods provide
satisfactory results, in some cases even better that previous
methods, but still the developer sets we obtained are only
10% of the actual developers. We are currently investigating
automated methods that will improve the ratio of matching
to total developers so that we don’t lose significant amounts
of information.

There is an additional consideration regarding matching
developers. We have assumed that only developers that
are matched across all assets should be retained as valid

 0

 0.05

 0.1

 0.15

 0.2

 0.25

40904

40905

40920

41180

41326

41375

42380

44673

44676

51538

53486

54091

54103

55038

55047

57674

58414

58997

59016

59283

59339

60681

61926

62368

63124

66898

68843

C
on

tr
ib

ut
io

n
po

in
ts

Developer Id

Positive contribution per developer broken down per action for project: gedit.

MST
MFR
MCT
CND
CNS
CADD
CCGN
CREM
CTF
CDF
CBN
CPH
BRP
BCC

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

66595

66630

66681

66731

66867

66872

66874

66883

66884

66889

66892

66929

67013

C
on

tr
ib

ut
io

n
po

in
ts

Developer Id

Positive contribution per developer broken down per action for project: Tracker.

MST
MFR
MCT
CND
CNS
CADD
CCGN
CREM
CTF
CDF
CBN
CPH
BRP
BCC

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

40904

40905

40920

41180

41326

41375

42380

44673

44676

51538

53486

54091

54103

55038

55047

57674

58414

58997

59016

59283

59339

60681

61926

62368

63124

66898

68843

C
on

tr
ib

ut
io

n
po

in
ts

Developer Id

Negative contribution per developer broken down per action for project: gedit.

CMF
CBF
CEC

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

66595

66630

66681

66731

66867

66872

66874

66883

66884

66889

66892

66929

67013

C
on

tr
ib

ut
io

n
po

in
ts

Developer Id

Negative contribution per developer broken down per action for project: Tracker.

CMF
CBF
CEC

Figure 3. Positive (up) and negative (down) action distribution for various project developers

data. This assumption poses the threat that developers that
are indeed active in only one aspect of the development
process will be disregarded. In our view, however, such an
assumption will not heavily distort the data as developers
that are exclusively involved in only one asset are not
common.

A final validity threat is posed by the fact that people have
the ability to tailor their behavior to things they are measured
against. Hence, some distortion is possible [Austin, 1996],
[Weinberg and Schulman, 1974].

As it was mentioned earlier, we plan to further ver-
ify our method of calculation. For this purpose we will
address our model as a formative model of measure-
ment [Diamantopoulos and Winklhofer, 2001] and test it
through a Partial Least Squares (PLS) model testing.

An additional goal regarding this research is to develop
suitable techniques in order to mine data for additional
actions and a larger number of projects, thus broadening
our view of developer contribution with enriched informa-
tion. The results offered by our proposed method and tool

can be used to analyze and discuss patterns of developer
contribution in a variety of contexts. An interesting aspect
would be to incorporate the element of time and discuss
how developer contribution levels change at different time
intervals or between project milestones (e. g. releases).

8. Conclusion

In this paper, we have presented our work concerning
the calculation of individual developer contribution to the
software development process. We have formed a method for
measuring contribution that encompasses actions of partici-
pation to the source code repository, the mailing lists and the
bug tracking systems of software projects and applied this
initially to several projects of the GNOME ecosystem. The
resulting information, here demonstrated for a selection of
projects, can be used to better our understanding regarding
the nature of the distribution of work done by developers
and enhance the research agenda in OSS. Future research
activities include the use of this information on a larger

 0

 20

 40

 60

 80

 100

G
nom

e-Desktop
Epiphany
G

nom
e-System

-Tools
G

nom
e-VFS

AbiW
ord

G
nom

e-Utils
G

nom
e-G

am
es

Evince
gedit
LibG

nom
ePrint

EyeO
fG

NO
M

E
G

TK-Doc
Tom

boy
Deskbar-Applet
Sabayon
O

rbit2
G

nom
e-Them

es
NetworkM

anager
G

nom
e-Pilot

G
O

K
G

nom
e-M

ud
Tracker
F-Spot
M

eld
G

num
eric

Cheese
G

arnom
e

Dashboard
gvfs
Sawfish
G

nom
e-Network

Banshee
G

nom
e-Screensaver

Seahorse
Brasero
G

nom
e-Keyring

G
nom

e-Com
m

ander
M

uine
M

lView
Planner
LSR
G

nom
e-Power-M

anager
Libsoup
Drivel
Vala
G

lom
G

nom
e-Chem

istry-Utils
Conduit

%

Total contribution percentage for the top 30% of developers

66%

Top-30%
Average

Figure 4. Total contribution from the top 30% of developers for various projects.

scale of projects and its combination with additional data
for clusters of projects for performing analyses.

The full source code for the Alitheia Core and contribution
metric plug-in can be found online at http://www.sqo-oss.
org.

Acknowledgements

This work was partially funded by the European Com-
munity’s Sixth Framework Programme under the contract
IST-2005-033331 “Software Quality Observatory for Open
Source Software (SQO-OSS)”. Project contributors include
the Aristotle University of Thessaloniki, Prosyst Software
GmbH, Sirius plc, Klarälvdalens Datakonsult AB and mem-
bers from the KDE project community. The authors would
like to thank Stavros Grigorakakis for his help in organising
the mirrored project data.

References

[Amor et al., 2006] Amor, J. J., Robles, G., and Gonzalez-
Barahona, J. M. (2006). Effort estimation by characterizing
developer activity. In The 8th international workshop on
economics-driven software engineering research. ACM.

[Asundi, 2005] Asundi, J. (2005). The need for effort estima-
tion models for open source software projects. In 5-WOSSE:
Proceedings of the fifth workshop on Open source software
engineering, pages 1–3, New York, NY, USA. ACM.

[Austin, 1996] Austin, R. D. (1996). Measuring and Managing
Performance in Organizations. Dorset House Publishing Com-
pany, Incorporated.

[Boehm, 1987] Boehm, B. W. (1987). Industrial software metrics
top 10 list. IEEE Software, 4(9):84–85.

[Diamantopoulos and Winklhofer, 2001] Diamantopoulos, A. and
Winklhofer, H. M. (2001). Index construction with formative
indicators: An alternative to scale development. Journal of
Market Research, 38(2):269–277.

[Gousios et al., 2008] Gousios, G., Kalliamvakou, E., and Spinel-
lis, D. (2008). Measuring developer contribution from software
repository data. In MSR ’08: Proceedings of the 2008 inter-
national working conference on Mining software repositories,
pages 129–132, New York, NY, USA. ACM.

[Gousios and Spinellis, 2009] Gousios, G. and Spinellis, D.
(2009). Alitheia core: An extensible software quality monitoring
platform. In Proceedings of the 31rst International Conference
of Software Engineering - Research Demos Track, Vancouver,
CA. IEEE. To appear.

[Hertel et al., 2003] Hertel, G., Niedner, S., and Herrmann, S.
(2003). Motivation of software developers in open source
projects: an internet-based survey of contributors to the linux
kernel. Research Policy, 32(7):1159–1177.

[Kan, 2003] Kan, S. H. (2003). Metrics and Models in Soft-
ware Quality Engineering, chapter 12.3 Productivity Metrics.
Addison-Wesley.

[Kaner and Bond, 2004] Kaner, C. and Bond, W. (2004). Software
engineering metrics: What do they measure and how do we
know? In 10th International Software Metrics Symposium
(METRICS 2004). IEEE, IEEE CS Press.

[Koch and Schneider, 2000] Koch, S. and Schneider, G. (2000).
Results from software engineering research into open source
development projects using public data. Diskussionspapiere
zum tätigkeitsfeld informationsverarbeitung und information-
swirtschaft, Wirtschaftsuniversität Wien.

[Koch and Schneider, 2002] Koch, S. and Schneider, G. (2002).
Effort, co-operation and co-ordination in an open source soft-
ware project: GNOME. Information Systems Journal, 12(1):27–
42.

[Louridas et al., 2008] Louridas, P., Spinellis, D., and Vlachos, V.
(2008). Power laws in software. ACM Transactions on Software
Engineering and Methodology, 18(1):1–26. Article 2.

[Maxwell and Forselius, 2000] Maxwell, K. D. and Forselius,
P. (2000). Benchmarking software-development productivity.
IEEE Softw., 17(1):80–88.

[Mockus et al., 2002] Mockus, A., Fielding, R., and Herbsleb, J.
(2002). Two case studies of open source software development:
Apache and mozilla. ACM Trans. Softw. Eng. Methodol.,
11(3):309–346.

[Mockus and German, 2003] Mockus, A. and German, D. (2003).
Automating the measurement of open source projects. In
Proceedings of the 25th Workshop on Open Source Software
Engineering (ICSE ’03), Portland, Oregon.

[Roberts et al., 2006] Roberts, J. A., Hann, I.-H., and Slaughter,
S. A. (2006). Understanding the motivations, participation, and
performance of open source software developers: A longitudinal
study of the apache projects. Manage. Sci., 52(7):984–999.

[Spinellis, 2006] Spinellis, D. (2006). Global software develop-
ment in the FreeBSD project. In Kruchten, P., Hsieh, Y., Mac-
Gregor, E., Moitra, D., and Strigel, W., editors, International
Workshop on Global Software Development for the Practitioner,
pages 73–79. ACM Press.

[Walston and Felix, 1977] Walston, C. E. and Felix, C. P. (1977).
A method of programming measurement and estimation. IBM
Systems Journal, 16(1):54–73.

[Warsta and Abrahamsson, 2003] Warsta, J. and Abrahamsson, P.
(2003). Is open source software development essentially an agile
method? In Feller, J., Fitzgerald, B., Hissam, S., and Lakhani,
K., editors, Proceedings of the 3rd Workshop on Open Source
Software Engineering, pages 143–147. International Conference
on Software Engineering.

[Weinberg and Schulman, 1974] Weinberg, G. and Schulman, E.
(1974). Goals and performance in computer programming.
Human Factors, 16(1):70–77.

