
Measuring Developer Contribution from Software
Repository Data

Georgios Gousios Eirini Kalliamvakou Diomidis Spinellis
Department of Management Science and Technology

Athens University of Economics and Business
{gousiosg,ikaliam,dds}@aueb.gr

ABSTRACT
Apart from source code, software infrastructures support-
ing agile and distributed software projects contain traces of
developer activity that does not directly affect the product
itself but is important for the development process. We pro-
pose a model that, by combining traditional contribution
metrics with data mined from software repositories, can de-
liver accurate developer contribution measurements. The
model creates clusters of similar projects to extract weights
that are then applied to the actions a developer performed
on project assets to extract a combined measurement of the
developer’s contribution. We are currently implementing the
model in the context of a software quality monitoring sys-
tem while we are also validating its components by means
of questionnaires.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—Process metrics;
D.2.9 [Software Engineering]: Management—Productiv-
ity

General Terms
Measurement, Management

Keywords
Contribution, Software repositories

1. INTRODUCTION
An important aspect of all engineering principles is the

assessment of the contribution of individuals that work on
a project. Contribution assessments are performed to moni-
tor the rate of project development, identify implementation
bottlenecks and isolate exceptional cases, while the results of
contribution assessments can help with future project plan-
ning. A common problem with contribution assessment is
the definition of what contribution is in a particular context

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’08, May 10-11, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-024-1/08/05 ...$5.00.

and also the selection and application of the appropriate
measurements.

In software engineering, contribution assessment entails
the measurement of the contribution of a person in terms of
lines of code or function points towards the development of
a software project [7]. In the recent years, the shift to more
agile development practices and the proliferation of software
and project management tools has reduced the estimation
capacity of classic software estimation models. A software
developer today is not only required to write code, but also
to communicate with colleagues effectively and to use a va-
riety of tools that produce and modify code with minimal
input from his side. This change has become more apparent
with the emergence of Open Source Software (oss).

In this paper, we propose a new model for evaluating de-
veloper contribution, which takes advantage of software de-
velopment repositories to extract contribution indicators.

2. EXISTING WORK
Despite how central the notion of contribution is to soft-

ware development (especially oss) it is not a central theme
in related literature in itself. Developer contribution is dis-
cussed in several contexts and is often related to other no-
tions such as productivity, participation or activity.

Productivity in abstract terms is the rate of output per
unit of input; it is essentially a measure of production effi-
ciency. Productivity evaluation usually entails extrapolating
a measurable quantity of a unit of work over the resources
required to produce it. In software engineering, productivity
has been a long-studied issue, as it has both managerial and
engineering aspects.

An important, and still open, issue is the definition of
what a unit of work is in the context of software engineering.
In one of the first studies appearing in the literature [11],
Sackman refers to words as the unit of work. The pro-
gramming code is viewed as literature text and each space-
separated identifier is considered to be a unit of thought. As
engineers started to understand that programming language
constructs cannot be classified as intellectual work, the unit
of work definition shifted to lines of code (loc), which still
remains the most widely used measure of software size. A
weakness of the loc metric is that it can only be determined
safely at the end of a project. To that end, function points
analysis usually complements the loc metric as a unit of
work for software estimation. Other units of work that have
been proposed in the literature are classes, methods and
components. A discussion on the various units of work in
the context of object oriented software can be found in [3].

There is no clear definition of what is contribution in the
context of software development. The project resources that
usually receive input are identified in references [6] and [9].
Software developers participate mainly by writing code, but
also by following discussions and submitting comments and
ideas to mailing lists as well as performing bug fixes [10,
13]. As a result, the source code repository, the mailing
list archives and bug databases are the widely used data
sources for discussing participation and activity in a software
project.

In reference [4], Glass et al. propose a distinction be-
tween clerical and intellectual types of actions in software
development. Drawing on contemporary literature, the pa-
per reports extended taxonomies of activities, spanning the
software development process from its initial stages to its
later ones. Our proposed asset/action taxonomy is in agree-
ment with their lists of software tasks.

Finally, Amor et al. present a model for development ef-
fort estimation based on data extracted from software pro-
cess traces [1]. Their model bears some similarity with our
model in the basic idea of using repositories to extract pro-
cess data, but their focus is on estimation rather than effort
and contribution evaluation.

3. OUR APPROACH
Our work is concerned with the measurement of developer

involvement and activity in the face of agile and distributed
development practices. The model we are building exploits
the availability of publicly accessible software repositories
to perform measurements and identify possible trends by
combining data across projects. It can also run fully auto-
matically with no human intervention.

Our model departs from the classic measurement prac-
tices as it does not consider source code as the only contri-
bution metric. This is a deliberate choice that we believe
reflects better on how software is developed in an agile con-
text, where an important portion of development time is
spent on communication and manipulation of development
support tools. Our model does not completely neglect the
importance of source code either; we still use the lines of
code metric1 as our basic contribution metric but addition-
ally we also scale it according to a factor that results from
the combination of the developer’s actions on project assets.
For a developer d, the contribution function C(d) is defined
as the sum of the total lines of code for the developer LoC(d)
plus the contribution factor function CF (d).

C(d) = LoC(d) + CF (d) (1)

The important part of our model is the definition of the
contribution factor function. To identify which actions can
be classified as contribution, we follow a hierarchical, top-
down approach: we first identify the project assets that can
potentially receive contribution and then analyze the actions
that can be performed on each of the identified assets to see
if they constitute a contribution or not. The actions are ini-
tially identified intuitively and through personal experience;
in Section 5, we present the method we will use for validating
our selection of actions. Also, not all actions have a positive
effect on a project; for example, a commit to a source code

1By “lines of code” we refer to non-comment program state-
ments.

repository that leads to a bug or decreases the quality of
the project as it is measured by metrics might be considered
a negative contribution. Furthermore, not all actions have
the same importance on the evolution of a project; for this
reason, we also specify weights that are attached to each
action.

In Table 1, we present a non-exhaustive breakdown of ac-
tions that can be performed on the identified project assets.
Most actions are self-explanatory and relatively easy to mine
from each asset repository using simple heuristics or exter-
nal tools [12]. Each action is a measurable entity whose
value is updated after the corresponding project asset has
been updated. Values are calculated per developer and are
aggregated per project asset. As each project asset might
have a different importance for each project, we also assign
a weight to the contribution of each asset to the total score
for a project, as seen in equation 2. The value Ax denotes
the sum of all the events affecting asset x in the project’s
lifetime.

Atotal = α∗Arep+β∗Aml+γ∗Abug +δ∗Awiki+ε∗Airc (2)

The values of the weights α, β, γδ and ε are calculated as
the percentage of the sum of events for an asset in the total
number of events, across projects. Individual projects are
also allowed to assign project-specific values to the weights
to account for what each project deems important for its
development process. In the latter case, the value of Atotal

is not of any particular use. As an interesting side effect
however, in the former case, the Atotal metric gives us an
estimate of the overall project activity, which we can then
use to rank projects according to.

Each asset type sum is decomposed to an aggregation of
measurable entities weighted individually. As an example,
equation 3 presents an expanded version of the Arep aggre-
gation. We denote Ai the total number of actions for action
i. We also assign a weight wi to each action type. De-
pending on whether an action has a negative or a positive
contribution to the project, its value is added or retracted
from the total score. Action aggregates for the remainder of
the assets are expanded similarly.

Arep =

n∑
i=0

wiAi = w1CAL±w2CNS± . . .±w11CBN (3)

The most complicated aspect of our model is the calcu-
lation of the weights (wi) for each action. For that, we use
an approximative approach, exploiting the fact that the sys-
tem this model is built for will extract information from
many projects. Based on findings by Capiluppi et al. [2],
we expect projects belonging to a single application domain
to exhibit similar action patterns. For example, code de-
velopment tools projects usually receive less documentation
commits and feature more active mailing lists than educa-
tional projects. For this reason, we first create clusters of
similar projects and then for each application cluster, we
extract the action weights using the following algorithm:

1. Count all events for each actionID across all cluster
projects

2. Count all events for all cluster projects

Asset Action ID Type
Code and
Documentation
Repository

Add lines of code of good/bad quality CAL P/N
Commit new source file or directory CNS P
Commit code that generates/closes a bug CCB N/P
Add/Change code documentation CAD P
Commit fixes to code style CSF P
Commit more than X files in a single commit CMF N
Commit documentation files CDF P
Commit translation files CDF P
Commit binary files CBF N
Commit with empty commit comment CEC N
Commit comment that awards a pointy hat CPH P
Commit comment that includes a bug report num CBN P

Mailing lists -
Forums

First reply to thread MRT P
Start a new thread MST P
Participate in a flamewar MFW N
Close a lingering thread MCT P

Bug Database Close a bug BCL P
Report a confirmed/invalid bug BRP P/N
Close a bug that is then reopened BCR N
Comment on a bug report BCR P

Wiki Start a new wiki page WSP P
Update a wiki page WUP P
Link a wiki page from documentation/mail file WLP P

IRC Frequent participation to IRC IFP P
Prompt replies to directed questions IRQ P

Table 1: Project resources and actions that can be performed on them. The Type column denotes whether
an action has positive (P) or negative (N) impact.

3. The percentage of contribution of each action category
to the total number of actions is the weight wi for each
action

We expect large projects to have thousands of events in
each action type and therefore the values that we will be
able to obtain through our heuristic method will be close to
those that we would have obtained from a linear regression
analysis of those weights, should that have been possible. An
evaluation of a large number of projects for each cluster will
provide us with indicative information about which actions
are most prominent in software development and will allow
us to filter out those actions that do not have a significant
effect on developer contribution.

Finally, the contribution factor CF (d) is a specialization
of equations 2 and 3 per developer. To calculate the contri-
bution factor value, we count the number of events for each
event type and for each asset type that were performed by
a specific developed d. If Aa

i (d) is a function that returns
the number of actions of type i performed by developer d on
asset a and wa

i is the weight of action i on asset a, then the
contribution factor for the developer is calculated as show
in equation 4.

CF (d) = α

n∑
i=0

wrep
i Arep

i (d) + · · · + ε

n∑
i=0

wirc
i Airc

i (d) (4)

4. IMPLEMENTATION
The model presented is being developed as an extension of

the sqo-oss system [5], and more specifically, as a plug-in to
the Alitheia software evaluation tool. The Alitheia platform
is an osgi-based tool, targeted to the evaluation of software
quality. It consists of a set of core services, such as accessors
to project assets, continuous updating of monitored projects
and relational data storage, and it is extensible through the

use of plug-ins. Plug-ins can either implement basic software
metrics or combine the results from other plug-ins arbitrar-
ily. In fact, the contribution metric implementation is a com-
pound plug-in, building on existing plug-ins that calculate
basic metrics such as lines of code and mailing list partici-
pation. The system is designed to perform in-depth analysis
of thousands of projects on a per repository revision basis
and allows full automation of the quality evaluation process
after the initial project registration.

5. EVALUATION AND CALIBRATION
To evaluate the validity of the proposed metric, we ap-

plied the Kaner and Bond metric evaluation framework [8].
The results can be seen in Table 2. The proposed metric
captures well the scaling of the measured attribute. A care-
ful selection of the metric components, i.e. the actions to
be measured, will strengthen the metric’s ability to produce
accurate measurements.

To this end, we will combine questionnaires with statis-
tical analysis. Questionnaires will solicit the views of de-
velopers (seen also as experts) regarding project assets and
actions that provide contributions. Developers will be asked:

• to scale the importance of each action for a project

• to answer how these actions can be categorized into
types

• to scale what the actions’ perceived compatibility is
with the given project assets

As a side-effect, respondents will also shed light on miss-
ing or redundant actions. Finally, we will use correlation
analysis to identify and filter out actions that exhibit strong
correlation coefficient.

Criterion Our Metric
Purpose Assess developer contribution in agile and distributed working environments.
Scope A project developed by a distributed workgroup
Measured Attribute Degree of contribution to the development process
Attribute Scale Ratio scale
Attribute Variability There is no knowledge of the variability of the measured attribute prior to perform-

ing the measurements
Metric Function The proposed metric counts and weights the number of actions on project assets

and the lines of code on a per developer basis. The highest those counts are, the
more a developer has contributed to a project (see section 3)

Metric Scale Ratio scale: The higher the contribution value, the more a developer has offered to
the project.

Variability of readings Some metric components are based on heuristics which may not work in certain
cases. This may affect measurements in non-foreseeable ways. Metric components
showing unstable results should be identified and excluded from the final version of
the model.

Attribute and Metric
Relationship

The metric generally captures changes in the attribute well. Metric components
are analogous to contribution, subject to variability. For 2 given developers d1 and
d2, the equation c(d1) + c(d2) = c(d1 + d2) is always valid.

Side effects No side effects can be foreseen. As the metric takes into account a variety of factors
and it is automatically calculated it is difficult for developers to change their be-
havior towards optimizing the metric without increasing their actual contribution.

Table 2: Metric evaluation according to the Kaner and Bond framework

6. CONCLUSIONS
We presented a approach for evaluating developer contri-

bution to the software development process, based on data
acquired from software repositories and collaboration infras-
tructures. Our model introduces a set of predefined actions
and exploits the availability of a large number of evaluated
projects in the Alitheia tool to extract a weight of the impor-
tance of each action. As of this writing, we are implementing
a plugin for a quality evaluation tool that produces measure-
ments for each predefined action, while also recalculating the
weights on regular intervals.

7. ACKNOWLEDGEMENTS
The authors would like to thank Ioannis Samoladas for his

help and constructive comments. This work is supported by
the European Community’s Sixth Framework Programme
under the contract ist-2005-033331 “Software Quality Ob-
servatory for Open Source Software” (sqo-oss).

8. REFERENCES
[1] J. J. Amor, G. Robles, and J. M. Gonzalez-Barahona.

Effort estimation by characterizing developer activity.
In The 8th international workshop on
economics-driven software engineering research. ACM,
May 2006.

[2] A. Capiluppi, P. Lago, and M. Morisio. Characteristics
of open source projects. In Proceedings of the Seventh
European Conference on Software Maintenance and
Reengineering, pages 317–327, Mar 2003.

[3] D. N. Card and B. Scalzo. Measurement for
object-orienated software projects. In Proceedings of
the 6th International Symposium on Software Metrics,
Florida, Nov 1999.

[4] R. L. Glass, I. Vessey, and S. A. Conger. Software
tasks: intellectual or clerical? Inf. Manage.,
23(4):183–191, 1992.

[5] G. Gousios, V. Karakoidas, K. Stroggylos,
P. Louridas, V. Vlachos, and D. Spinellis. Software
quality assesment of open source software. In

Proceedings of the 11th Panhellenic Conference on
Informatics, May 2007.

[6] G. Hertel, S. Niedner, and S. Herrmann. Motivation of
software developers in open source projects: an
internet-based survey of contributors to the linux
kernel. Research Policy, 32(7):1159–1177, Jul 2003.

[7] S. H. Kan. Metrics and Models in Software Quality
Engineering, chapter 12.3 Productivity Metrics.
Addison-Wesley, 2003.

[8] C. Kaner and W. Bond. Software engineering metrics:
What do they measure and how do we know? In 10th
International Software Metrics Symposium
(METRICS 2004). IEEE, IEEE CS Press, Sep 2004.

[9] S. Koch and G. Schneider. Results from software
engineering research into open source development
projects using public data. Diskussionspapiere zum
tätigkeitsfeld informationsverarbeitung und
informationswirtschaft, Wirtschaftsuniversität Wien,
2000.

[10] A. Mockus, R. T. Fielding, and J. Herbsleb. A case
study of open source software development: the
apache server. In ICSE ’00: Proceedings of the 22nd
international conference on Software engineering,
pages 263–272, New York, NY, USA, 2000. ACM.

[11] H. Sackman, W. J. Erikson, and E. E. Grant.
Exploratory experimental studies comparing online
and offline programming performance. Commun.
ACM, 11(1):3–11, 1968.

[12] D. Spinellis. Global software development in the
FreeBSD project. In P. Kruchten, Y. Hsieh,
E. MacGregor, D. Moitra, and W. Strigel, editors,
International Workshop on Global Software
Development for the Practitioner, pages 73–79. ACM
Press, May 2006.

[13] G. von Krogh, S. Spaeth, and K. R. Lakhani.
Community, joining, and specialization in open source
software innovation: a case study. Research Policy,
32(7):1217–1241, Jul 2003.

