
The GHTorent Dataset and Tool Suite
Georgios Gousios

Software Engineering Research Group
Delft University of Technology

Delft, The Netherlands
Email: g.gousios@tudelft.nl

Abstract—During the last few years, GitHub has emerged as
a popular project hosting, mirroring and collaboration plat-
form. GitHub provides an extensive REST API, which enables
researchers to retrieve high-quality, interconnected data. The
GHTorent project has been collecting data for all public projects
available on Github for more than a year. In this paper, we
present the dataset details and construction process and outline
the challenges and research opportunities emerging from it.

Index Terms—dataset, repository, GitHub

I. INTRODUCTION

During the recent years, Github has become the repository
hosting site of choice for many Open Source Software (OSS)
projects. Interestingly, Github provides a REST API to its full
data set, making it an attractive research target. The GHTorent
project uses the Github API to collect raw data and extract,
archive and share queriable metadata. The created datasets
have already been exploited in other work (analysis of the
pull development model [1], analysis of drive-by commits and
analysis of test incentives on social sites), while collaborations
with external research groups are under way.

An outline of the project and bits of the implementation
were presented in [2]. Since this work, we extended the
collection process to an additional 15 API end points, stabilized
the data and metadata schema and developed a service to
collaboratively collect and share data. More than 900GB of
raw data and 10GB of metadata have been collected and are
available for download. In this paper, we present the finalized
schema, go through the challenges and limitations of working
with the dataset and outline research opportunities that emerge
from it.

II. DATA COLLECTION

The primary challenge for the data collection process is the
Github imposed 5,000 requests per hour limit for authenticated
requests, while the event generation rate is already higher;1

given that a single event can lead to several (even thousands)
of dependent requests, it is not practical to assume that a single
Github account will suffice to mirror the whole dataset. For
this reason, GHTorent was designed from the ground up to
use caching excessively (to avoid duplicate requests) and also
to be distributed (to enable multiple users to retrieve data in
parallel). We briefly describe how GHTorent employs those
two mechanisms in the following paragraphs.

1On an average day, Github produces 200,000 events, or about 8,300 events
per hour

The Github API supports two types of queries:
• Resource queries retrieve a specific instance of a resource.

Per REST architecture mandates, the URL identifying a
static resource remains constant after the resource has
been initialized.

• Range queries retrieve a list of resources, usually re-
lated to a given resource. For example, the query
/{user}/followers retrieves the followers for a
user, while the query /{user}/{repo}/commits re-
trieves the commits for a repository. Paging is used to
limit the amount of data per response. Range queries do
not necessarily return the full entity instance for each
item, but they usually include a URL where the item may
be retrieved. As a result, a range query might result to
several resource queries.

Resource query results can be cached very efficiently, as
by definition they never change. Range queries are trickier to
cache, as their result might change as the project evolves (new
commits, new followers, etc); fortunately, by default Github
serves newer results first, so it is enough to go through the first
few pages of results only in order to retrieve the updated data.
To cache the results per entity, GHTorent uses a MongoDB
database, which offers the added benefit of enabling querying
on the raw data. Caching is also used at the HTTP request layer;
GHTorent automatically serializes HTTP responses to disk. This
avoids retrieving older pages in range queries twice.

The mirroring algorithm is based on a recursive dependency
resolution process. For each retrievable item, we specify a set
of dependencies, as they logically flow from the data schema
(see Figure 1). For example, in order to retrieve a project, it is
necessary to retrieve the owning user first; similarly, in order
to retrieve a pull request, the project needs to be retrieved
first. If any step of the dependency resolution fails, the whole
item is marked as non-retrieved. The process was designed
from start to be idempotent: every step of the dependency
resolution may fail but once it succeeds, it will always return
the same result. This design choice has been very important
since it makes our data stores append only and the results of
each step memoizable and therefore cachable.

Data schema

The data schema can be seen in Figure 1. Following
Github’s API organization, most entities belong to a project
and contain entries corresponding to actions initiated by a
user. The schema also records information about users,



Entity Description Raw data entity Num Items
— Events on repositories. events 43,090,195
projects Project repositories. repos 1,326,900
users Github users. users 793,855
project members Users with commit access to the referenced project. repo_collabs 983,629
organization members List of members in an organization. org_members 34,924
commits A list of all commits on Github. The project_id field

refers to the first project this commit has been added to.
commits 29,978,291

project commits List of all commits to a project. — —
commit parents Commits that are parents to a commit. — —
commit comments Code review comments for a commit. commit_comments 126,697
watchers users that have starred (was watched) a project watchers 7,744,619
followers users that are following another user. followers 1,797,343
issues Issues that have been recorded for a project. issues 2,326,069
issue events Chronologically ordered list of events on an issue. issue_events 4,085,294
issue comments Discussion comments on an issue issue_comments 2,886,006
pull requests List of pull requests for base repo. Requests originate at

head head_repo/commit and are created by user_id
pull_requests 1,144,251

pull request comments Discussion comments on a pull request pullreq_comnts 2,228,894
pull request history Chronologically ordered list of events on a pull request — —

Fig. 1. Schema entities, their description, the corresponding raw data entities and the number of raw data items (Feb 15, 2013).



organizations and their members (organization members),
while commits are shared among projects, their forks, and
pull requests. Most entities are timestamped with their cre-
ation date (the created_at field), while for entities which
can be in more than one states in time (e.g., pull requests
and issues), additional tables record those states in chrono-
logical order. For entities that correspond to API calls, the
ext_ref_id field contains the unique identifier to the raw
entity in the MongoDB database.

Workers for Data

The data collection was designed from the beginning as a
decentralized process. Decentralization is mediated using the
worker queue model; a message producer sends messages to
the appropriate queue and several workers process messages,
perform the requests and store the results in the shared
database.

Decentralization enables collaborating researchers to con-
tribute to the data collection effort, through what we call
the workers for data model. In exchange for data collection
workers, the project offers direct access to the live project
databases. Set up instructions for workers as well as a precon-
figured virtual machine are offered through the project’s web
site. Apart from offering direct access to the data, the project
also distributes dumps of the collected data, in both raw and
relational formats. Depending on the use case, the relational
dump might be enough for further processing. The dumps are
distributed using the BitTorrent protocol. Furthermore, a query
interface allows third party users to directly query an archived
version of the relational database.

III. CHALLENGES AND LIMITATIONS

From a repository mining perspective, the GHTorent dataset
has the following limitations:

Data is additive: Github is a dynamic site where devel-
opers, projects and wikis are created and deleted constantly.
Despite the fact that the Github event stream reports additions
of entities, it does not report deletions. This means that the
information in the GHTorent database cannot be updated when
a user or a repository has been marked as deleted.

Important entities are not timestamped: Github does not
report timestamps for the watchers/stars and followers entities.
This means that it is not possible to query the followers for a
user or the watchers for a repository at a specific timestamp.
As a workaround, GHTorent uses the timestamp of the event
that is generated when a follow/watch action is performed,
but this is only limited to the events that took place since the
GHTorent project started collecting data.

Issues and pull requests: Issues and pull requests are dual
on Github; for each opened pull request, an issue is opened au-
tomatically. Commits can also be attached to issues to convert
them to pull requests (albeit with external tools). As a result,
discussion comments for a pull request need to be retrieved
from multiple sources, namely from pull request comments
for code reviews and from issue comments for pull requests.
Moreover, there are two different status entities (namely, the

pull request status and the issue status) that need to be queried
to get the succession of events on a pull request.

Commit users: Git allows users to setup custom user
names as their commit names. The prevailing convention is
that users use their email as their commit names; this is not
a strict requirement though. By matching the commit email
to the email the user has registered with at Github, it is
possible for Github to report the same username across all
entities (commits, issues, wiki entries, pull requests, comments
etc) affected by a user. GHTorent relies on the git user name
resolution to link an entry in the users table to an entry in
the commits table. If the commit user has not been resolved,
for example because a commit user is not a Github user or the
git user’s name is misconfigured, GHTorent will create a fake
user entry with as much information as available. If in a future
update, the resolution does take place, GHTorent will attempt
to replace the fake entry with the normal entry. Despite this,
there are several thousand fake users in the current dataset.

Pull requests merged outside Github: Although Github
automates the generation and submission of patches among
repositories through pull requests, those need not be merged
through the Github interface. Indeed, several projects choose to
track the discussion on pull requests using Github’s facilities
while doing the actual merge using git. This behaviour can
be observed in projects where an usually big number of pull
requests are closed without being reported as merged. In such
cases, we can deduce that a pull request has been merged by
checking whether the commits (identified by their SHA id)
appear in the main project’s repository (through a metadata
query). However, this heuristic is not complete, as several
projects use commit-squashing or even diff-based patching to
transfer commits between branches, thereby loosing authorship
information.

Issue tracking is open ended: Repository mining for bug
tracking repositories is greatly enhanced, if records are consis-
tent across projects. This is why most studies have been carried
on Bugzilla data, which offers a good default set of properties
per bug and little opportunities to customize the bug report
further. On the other hand, Github’s bug tracker only requires
a textual description to open a bug. Bug property annotations
(e.g. affected versions, severity levels) are delegated to project
specific labels. This means that characteristics of bugs cannot
be examined uniformly across projects.

Changing data formats: As Github is in active develop-
ment, the provided data formats and API endpoints are moving
targets. During the lifetime of the project, the commit entry
schema changed twice, while the watchers entity has been
renamed to stargazers. We try to follow the developments
that affect the generation of our relational schema only; so
far, no modification was necessary.

Some events may be missing: Malfunctions in the mir-
roring system (software or network) can result in some parts
of the data that are missing. In principle, apart from events,
all missing data in GHTorent can be restored (by replaying
the event log or using the ght-retrieve-repo script)
provided that the original data have not been deleted from



Github. In the case of missing events, the current Github API
does not permit retrieving more than the 300 newest events per
repository. On busy projects, this is less than a day’s worth
of event log. Known periods of missing events are several
days at the beginning of March 2012, when an error to the
event mirroring script went unnoticed, and from mid October
2012 to mid November 2012, when we were trying to adapt
GHTorent to the newly imposed requirement for authenticated
API requests.

REST queries return modified results: Some REST API
calls return slightly modified results if they are queried in
different time moments. We have noticed this behaviour in
the created_at timestamps in several entities. In cases
where the field is used as part of a primary key, this might
lead to duplicated records. Currently, this behaviour affects the
pull request history and issue events.

IV. RESEARCH OPPORTUNITIES

The GHTorent dataset is a rich source for both software
engineering and big data research; we outline some research
opportunities emerging from this data set below:

1) Unified developer identities: MSR researchers have long
faced the problem of disjoint developer identities when at-
tempting to do research across projects and data sources. The
GHTorent dataset offers combined source code, source code
management, code review, issue and social data using a single
developer identity. Researchers can thus track developer ac-
tions across projects (e.g. developer migrations) and combine
them in novel and interesting ways.

2) Software ecosystems: In Github, project ecosystems are
created through forking, sharing of developers and dependency
based linking of components. The GHTorent dataset has rich,
timestamped information about projects and their forks, which
can be easily augmented with library dependency information
by automatically browsing related projects.

3) Network analysis: Several networks are being formed on
Github, for example project networks through forks, developer
networks through participation to common projects, social
networks through following other users and watching repos-
itories. Network analysis can either be targeted, for example
exploring project community formation dynamics, or abstract
by investigating the structure and stability of formed networks
to create predictors of future behavior network behavior.

4) Collaboration and promotion: Researchers often ask
questions regarding the collaboration tactics of developers and
membership promotion strategies in OSS project organizations.
The GHTorent dataset, provides timestamped data (albeit since
the beginning of the GHTorent project only, see Challenge III
above) to investigate how small contributions (known as
“drive-by commits”) and project forking leads to developer and
project collaboration and promotion of an external developer
to a team member.

5) Replications of existing studies: A common theme in
current software engineering research is the lack of repli-
cations or the mediocre replicability of existing works. The
GHTorent dataset offers an opportunity to replicate existing

work and scale research to many projects, as the dataset
is homogenized across several thousand projects, which can
be queried for specific characteristics (e.g. programming lan-
guage, team size, presence of external collaborators etc).

6) An extensible dataset: While GHTorent is covering all
public Github entities, it does not include advanced ways of
linking them yet. For example, projects can be linked by means
of dependencies in their build systems, while commits may be
linked with issues by searching for issue numbers in commit
messages. The design of the data update process in GHTorent
makes such extensions possible: database changes are tracked
in a systematic way through migrations, while command line
clients that exploit the distribution infrastructure are trivial to
develop. Collaborating researchers can thus extend the dataset
with custom analyses and data linking facilities.

V. RELATED WORK

Similar to GHTorent is the Github Archive project [3]. Both
projects mirror Github’s public event timeline. The timeline
sources are different; while GHTorent uses the official Github
API timeline, Github Archive parses the data used to create
the corresponding Github web page. Due to the differences
in the two API endpoints, Github Archive’s event dataset is
richer. However, GHTorent also retrieves the data linked from
the event timeline, which allows it to go back in history; in
fact, while Github Archive’s data starts in February 2012,
GHTorent’s dataset can and has been extended for certain
projects to 2008. In addition, the GHTorent toolset allows for
retrieving the full history for a single project and the full list
of actions for a single developer, which may make it more
appealing to the MSR community.

VI. CONCLUSIONS

In this work, we presented the GHTorent dataset and suite
of tools, analyzed the mirroring process and outlined the
limitations of the current data. The provided dataset has a
strong potential for providing interesting insights in areas
including but not limited to community dynamics, global
software engineering and distributed collaboration. We are
actively seeking contributions that will enhance the collected
dataset’s utility to the research community. More information
can be found at http://www.ghtorrent.org.

The source code for the project can be obtained at https:
//github.com/gousiosg/github-mirror.

ACKNOWLEDGEMENTS

This work is funded by Marie Curie IEF 298930 — SEFUNC.

REFERENCES

[1] G. Gousios, M. Pinzger, and A. van Deursen, “An exploration of the pull-
based software development model,” Mar. 2013. Submitted to the ACM
symposium on the Foundations of Software Engineering 2013.

[2] G. Gousios and D. Spinellis, “GHTorrent: GitHub’s data from a firehose,”
in MSR ’12: Proceedings of the 9th Working Conference on Mining
Software Repositories (M. W. Godfrey and J. Whitehead, eds.), pp. 12–21,
IEEE, June 2012.

[3] I. Grigorik, “The Github archive,” Mar. 2012. Online, accessed Feb 2013.


