
Matching GitHub developer profiles to job
advertisements

Claudia Hauff
Delft University of Technology

the Netherlands
Email: c.hauff@tudelft.nl

Georgios Gousios
Radboud University Nijmegen

the Netherlands
Email: g.gousios@cs.ru.nl

Abstract—GitHub is a social coding platform that enables
developers to efficiently work on projects, connect with other
developers, collaborate and generally “be seen” by the commu-
nity. This visibility also extends to prospective employers and HR
personnel who may use GitHub to learn more about a developer’s
skills and interests. We propose a pipeline that automatizes this
process and automatically suggests matching job advertisements
to developers, based on signals extracting from their activities on
GitHub.

I. INTRODUCTION

In order to find potential employers, developers search for
job openings in various online job portals and compare their
desires, experiences and activities with the described position.
This is a cumbersome process as many job advertisements
are lengthy, mentioning a plethora of programming languages,
libraries and techniques that the perfect candidate should
be familiar with. Moreover, each of these items is usually
conditioned on the number of years of experience or the level
of expertise and may fall into the “required” or “preferred”
skill category. Over the years, job advertisements have asked
for a larger number of skills from prospective employees.
This has led to a situation where a developer matching half
of the described requirements may actually be a very well
qualified candidate for the advertised position. In such cases
having insights into how well other potential candidates fit
the position may help the developer to judge whether to
apply or not. Another complicating factor is the fact that
job advertisements’ writing style may be influenced by the
numerous people involved in the creation of a job profile
(managers, developers, HR personnel, etc.). Here a “semantic
gap” may exist between search terms a developer is using to
find suitable advertisements in job portals and the terms that
actually appear in an advertisement.

Business-oriented social networks, such as LinkedIn1, are
using recommender engines to push job advertisements to their
users (in addition to the traditional pull-based model where
users are actively searching among the available advertise-
ments). Recommender algorithms determine the similarity be-
tween pairs of user and advertisement profiles and recommend
the job to the user if the similarity is high. While this process
moves the burden of determining the degree of matching away
from the user, it is limited in its abilities due to the lack of

1https://www.linkedin.com/

detailed user profile data as statements such as “Experienced
Java developer” or “Embedded Software Engineer” contain
relatively little information.

In the recent years, social coding platforms have become
an important tool for developers to become visible in the
developer community [1]. Developers use sites such as GitHub
and BitBucket to showcase their work in the hope that this will
help them in the hiring process by potential employers [2].
However, judging the qualification of an applicant based on
his or her GitHub profile is equally challenging [3]. GitHub
provides several user-based summary statistics such as Con-
tributions in the last year, Number of forked projects, Number
of followers, however, the usefulness of this information is
very limited, as neither does it offer immediate insights into
the developer’s programming abilities nor does it highlight the
particular languages or tool chains the developer knows.

To address the process shortcomings we identified above,
we propose a pipeline that automatically mines GitHub user
profiles and job advertisements for relevant information. We
employ an approach that “translates” both the developer profile
and the advertisement into the Linked Open Data (LOD) [4]
space, where we can exploit the background information avail-
able in the LOD cloud to bridge the semantic gap mentioned
earlier. Additionally, this setup allows us to (partially) rely on
well-tested algorithms and toolkits, while it provides a natural
mechanism to determine the similarity between a natural
language job advertisement and a developer’s GitHub profile.

II. APPROACH

The general overview of our pipeline is shown in Figure 1.
The three main components are:

• Extraction of concepts from job advertisements and
social coding user data.

• Weighting of concepts in such a way that more important
concepts receive higher weights.

• Matching of the two (job and coding profile-based)
concept vectors.

A. Concept Extraction Overview

1) The DBPedia Ontology: Our approach is based on two
techniques from natural language processing namely, named
entity recognition (NER) in combination with named entity
disambiguation (NED). Given an unstructured text (e.g. a job

https://www.linkedin.com/

Fig. 1: Overview of our pipeline

advertisement) NER determines which words or phrases in
the text refer to an entity, which can be any real-world entity.
NED determines which concrete entity a particular word or
phrase refers to. The combination of both techniques have
been shown [5] to be a powerful mechanism to turn natural
language text into a structured representation that machines
can reason about.

We rely on DBPedia Spotlight,2 one of the most commonly
used open-source annotation toolkits for natural language text,
as a concrete implementation of concept extraction. The large-
scale DBpedia ontology [6] behind the DBPedia Spotlight
service is automatically derived from Wikipedia and (based on
the English Wikipedia edition), currently contains more than
4.5 million entities (“things”) and nearly 600 million links
between them. Wikipedia (and thus DBPedia) contain entries
covering most if not all programming languages, important
programming frameworks and libraries, as well as many
computer science concepts. We thus consider it a suitable
ontology to use for our specific use case.

2) A Concrete Example: Consider the following excerpt
from one of the job advertisements in our data set and its
corresponding automatically derived Named Entity annota-
tions. Shown in bold are all phrases that were recognized as
referring to entities (or concepts). The annotations relevant to
our scenario are shown in blue, while non-relevant entities are
shown in red.

The successful [Successful (song)]
candidates [Candidate]
will have experience [Experience]
of OOP [Object-oriented programming]
in at least one of PHP [PHP]
(or another comparable,
dynamic language), [Dynamic programming language]
Java [Java (programming language)]
(ideally with GWT) [Google Web Toolkit]
or C++ [C++]
(ideally with Win32). [Windows API]
They will also be well versed in
Test Driven Development [Test-driven development]
and advanced practices of

2http://dbpedia-spotlight.github.io/

Object Oriented Programming [Object-oriented programming]
such as Design Patterns and Refactoring. [Martin Fowler]

The phrases (the so-called surface form of an entity) are not
simply matched against a list of entity names, instead they are
disambiguated based on the context a word or phrase appears
in. For instance, Javais recognized as the programming lan-
guage concept (instead of the island, the coffee type or another
one of the more than 30 different entities that have the surface
form Java). Each entity is uniquely identified as a particular
LOD concept. Concepts are linked to each other through
different types of properties, thus forming a densely connected
graph structure. Figure 2 contains a small excerpt of this
graph; even though C++ and the Java programming language
are not directly linked, we can determine some degree of
relatedness by a walk across the graph or by considering
the textual similarity between each entity’s description [7]
(similarly, we can observe a lower relatedness degree between
C++ and the GWT, as the distance between the two concepts
is larger). Since in our particular use case we are mostly
interested in concepts related to information technology, we
restrict the annotations to concepts that have the type computer
or internet.

B. Developer Profile Extraction

While the annotation of the job advertisements is straight-
forward (as just shown in the example), annotating a devel-
oper’s GitHub data with concepts from the same ontology
(to allow a simple matching strategy) is more challenging.
While programming language identification can largely be
considered a solved problem, more fine-grained information
such as the libraries used by a particular project often require
language-specific solutions (e.g. Maven projects requires the
parsing of pom.xml files). Furthermore, identifying the degree
of familiarity a developer has with particular concepts (e.g.
WebSocket programming, the TCP protocol, Bloom filters)
requires deep parsing and semantic tagging of the developer’s
source code contributions; parsing at scale requires vast com-
puting resources while concept extraction from source code is
neither precise nor complete [8].

We advocate that README (and in general, documentation)
files in repositories in the developer’s profile are a good proxy

http://dbpedia-spotlight.github.io/

Fig. 2: An excerpt of DBPedia’s graph structure. Each node is a concept, the properties between two concepts are captured in
the form of a labelled edge.

for the developer’s familiarity with certain programming con-
cepts, languages and toolkits. A typical README file contains
information about what the software can do, description of
technologies used in it, steps on how to recreate development
environments and in general a wealth of information that the
developers should be familiar with if they own a repository.
Since such READMEs are in natural language form, we can
use exactly the same process as for the job advertisements,
only instead of extracting the concepts of a single piece of
text, we process all README files contained in all projects
the developer is associated with.

C. Concept weighting
The extracted concepts from job descriptions and GitHub

developer profiles are converted to vectors: jobi =
(w1,i, w2,i, ..., wn,i) and devj = (w1,j , w2,j , ..., wn,j). Each
dimension corresponds to one DBPedia concept and if a
concept cs is found in the job advertisement (or developer
profile), the corresponding weight ws is set to a value above
zero. Since these vectors are extremely sparse, in the future we
will also investigate the use of semantic relatedness measures
on the DBPedia data to “switch on” related concepts that are
not explicitly mentioned in the advertisement or developer
profile.

Not all concepts extracted from an advertisement or de-
veloper profile are equally important. We use a basic con-
cept weighting scheme commonly employed in information
retrieval: TF.IDF [9] which gives a low weight to concepts that
appear in many documents (as those are not very informative)
while at the same time benefiting concepts which occur rarely
across the entire corpus of documents, but often within par-
ticular documents. These weights are computed separately for
the corpus of job advertisements and the corpus of developer
profiles.

D. Concept matching
The vector space model [9] provides a natural mechanism to

determine the similarity between the devised job and developer
profile vectors, namely the cosine of the angle between the two
vectors (the so-called cosine similarity), which is bounded to a
value in [0, 1] where a larger score indicates higher similarity.
We can now for each job advertisement rank all developer
profiles according to the similarity as well the other way round.

Number of job adverts 1, 337
Average number of words / advert 284.7

Aveage number of entities / advert 84.1
Average number of distinct entities / advert 59.0

Average number of IT entities / advert 14.4
Average number of distinct IT entities / advert 9.7

Total number of distinct IT entities found 486

TABLE I: Overview of our job advertisement data set.

III. PRELIMINARY RESULTS

a) Job advertisements: We crawled job advertisements
posted in early 2015 from the UK job portal
Indeed3. Each search on Indeed returns up to 1, 000
search results (i.e. advertisements); we conducted
five searches using the following search phrases:
{software developer, software architect, software engineer,
computer science,web developer} and thus retrieved
5, 000 advertisements in total. Of those more than 1, 300
advertisements were posted directly on the Indeed platform
(instead of referring to an externally placed advertisment). We
annotated them with DBPedica concepts as discussed before;
the main results are shown in Table I. Important for our work
is the fact that on average ten IT concepts are mentioned in
each advert. The ten most occurring concepts in this data set
are shown in Table II (left column).

b) Developer profiles: We extracted the 1, 000 top com-
mitters from the GHTorrent [10] dataset. 863 of those users
forked or created at least one project that contains a non-empty
REAdME.md file, the remainder are either bots (63 users) or
created/forked projects with only empty README.md files
(70 users). Thus, overall for less than 10% of human GitHub
it is not possible to use README’s as source of developer
profile data. Each README.md is associated with one project.
The main statistics of our developer data set are shown in
Table III. Importantly on average for each developer we are
able to extract 500 IT entities across all the developer’s
README files. The 57 distinct IT entities found on average
per developer indicate the high level of detailed information
we are able to extract. The right column of Table II shows

3http://www.indeed.co.uk

http://www.indeed.co.uk

Job advertisements Developer profiles

Computer software (41.8%) Hypertext Transfer Protocol (78.0%)
Application software (39.6%) Scripting language (67.0%)
Cascading Style Sheets (37.8%) HTML (67.0%)
Business (36.4%) COM file (61.1%)
JavaScript (34.5%) Debian (60.5%)
HTML (23.0%) JavaScript (56.4%)
Debian (19.2%) Library computing (44.8%)
PHP (18.9%) Git (software) (29.2%)
Computing platform (18.4%) GNU Project (29.2%)
.NET Framework (18.0%) Wiki (27.5%)

TABLE II: Overview of the ten most often occurring IT
concepts in our job advertisement and developer profile data
sets. Shown in brackets is the percentage of documents (job
advertisements / developer profiles) that contain the concept
at least once.

Fig. 3: Each marker represents one IT entities (851 in total)
which represent the union of all concepts found in the job
adverts and developer profile data sets. The scatter plot shows
in how many developer profiles the entity appeared (at least
once) vs. in how many job advertisements.

the most often occurring IT entities across developers. In
support of our envisioned application, we find substantial
overlap between the entities extracted from job advertisements
and the entities extracted from developer profiles as evident
in Figure 3; while some concepts appear either only among
the developer profiles or among the job adverts, the majority
of concepts appear at least once in both corpora. The linear
correlation between the number of times a concept appears in
developer profiles vs. job adverts is r = 0.49 (fitted line in
Figure 3).

c) Matching developer and job profiles: Lastly, for every
pair of job advert and developer profile vector we computed
their similarity. A manual investigation of the developer rank-
ings produced for 25 adverts showed reasonable results though
it also became clear that additional GitHub signals (number
of lines of code, coding style and quality, etc.) are required
as extensive README files do not always equate to extensive
coding. Similarly, more fine-grained distinctions for forked and
created projects are likely to aid the results.

IV. RELATED WORK

Profiling developers using trace data is an active field of
research. Developer profiles have been built, among others, for
building project-specific expertise knowledge bases [11], iden-
tify developers with similar expertise [12], measure develop

Number of developers 863

Average number of project README files / developer 32.3
Average number forked project README files / developer 16.5
Average number created projet README files / developer 15.7

Average number of words / README file 384.5
Average number of non-code words / README file 320.2

Average number of entities / README file 52.3
Average number of distinct entities / README file 17.23

Average number of IT entities / README file 18.0
Average number of distinct IT entities / README file 6.0

Average number of entities /developer 1447.3
Average number of distinct entities / developer 291.3
Average number of IT entities / developer 500.1
Average number of distinct IT entities / developer 78.1

Total number of distinct IT entities found 764

TABLE III: Overview of our developer profile data set.

productivity [13], and recommending developers for specific
tasks [14] (e.g. bug resolution [15]). However, to the best
of our knowledge, no work extracted developer profiles for
matching with job advertisements.

In reference [1], Capiluppi et al. described a process (and
its pitfalls) for assessing technical candidates using data,
among others, from social coding sites. Marlow et al. [16]
investigated how more detailed, publicly accessible signals
about a developer’s activities on GitHub are used by employers
in the recruitment process. In an interview-based study with
several IT employers (active in the open-source community)
they identified four main insights that employers can reliably
gain from a study of developer GitHub profiles: (1) Shared
open source values, (2) Community acceptance of work &
contribution quality, (3) Project management skills, and (4)
Passion for coding. Though again, the limiting factor in this
setup is the time required to manually inspect each developer’s
profile.

V. CONCLUSIONS

The availability of data from social coding sites enables the
automated extraction of developer profiles for the purposes
of matching them with job advertisements. We proposed a
pipeline to do this matching automatically. Our key insights
are(i) the approximation of the developers’ actual program-
ming knowledge through README files in their profile repos-
itories, and, (ii) the use of a large scale ontology to convert
both job advertisements and developer profiles to vector ob-
jects featuring a common vocabulary. We obtained interesting
insights such as the substantial overlap in covered concepts
between adverts and README files and the abundance of
IT concepts in the latter, which leads us to believe that our
approach is a promising start. In the future, we plan to augment
developer profiles through extracting fine-grained information
from the source code and build files for their repositories.

REFERENCES

[1] A. Capiluppi, A. Serebrenik, and L. Singer, “Assessing technical candi-
dates on the social web,” Software, IEEE, vol. 30, no. 1, pp. 45–51, Jan
2013.

[2] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Social coding in
github: transparency and collaboration in an open software repository,”
in Proceedings of the ACM 2012 conference on Computer Supported
Cooperative Work. ACM, 2012, pp. 1277–1286.

[3] L. Singer, F. Figueira Filho, B. Cleary, C. Treude, M.-A. Storey,
and K. Schneider, “Mutual assessment in the social programmer
ecosystem: An empirical investigation of developer profile aggregators,”
in Proceedings of the 2013 Conference on Computer Supported
Cooperative Work, ser. CSCW ’13. New York, NY, USA: ACM, 2013,
pp. 103–116. [Online]. Available: http://doi.acm.org/10.1145/2441776.
2441791

[4] C. Bizer, T. Heath, and T. Berners-Lee, “Linked data-the story so
far,” International Journal on Semantic Web and Information Systems
(IJSWIS), vol. 5, no. 3, pp. 1–22, 2009.

[5] C. C. Aggarwal and C. Zhai, Mining text data. Springer Science &
Business Media, 2012.

[6] P. N. Mendes, M. Jakob, A. Garcı́a-Silva, and C. Bizer, “Dbpedia
spotlight: shedding light on the web of documents,” in Proceedings of
the 7th International Conference on Semantic Systems. ACM, 2011,
pp. 1–8.

[7] E. Gabrilovich and S. Markovitch, “Computing semantic relatedness
using wikipedia-based explicit semantic analysis.” in IJCAI, vol. 7, 2007,
pp. 1606–1611.

[8] A. Kuhn, S. Ducasse, and T. Grba, “Semantic clustering: Identifying
topics in source code,” Information and Software Technology, vol. 49,
no. 3, pp. 230 – 243, 2007, 12th Working Conference on Reverse
Engineering. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0950584906001820

[9] R. Baeza-Yates, B. Ribeiro-Neto et al., Modern information retrieval,
1999, vol. 463.

[10] G. Gousios, “The GHTorrent dataset and tool suite,” in Proceedings
of the 10th Working Conference on Mining Software Repositories, ser.
MSR ’13. Piscataway, NJ, USA: IEEE Press, 2013, pp. 233–236.

[11] A. Mockus and J. D. Herbsleb, “Expertise browser: A quantitative
approach to identifying expertise,” in Proceedings of the 24th
International Conference on Software Engineering, ser. ICSE ’02.
New York, NY, USA: ACM, 2002, pp. 503–512. [Online]. Available:
http://doi.acm.org/10.1145/581339.581401

[12] D. Schuler and T. Zimmermann, “Mining usage expertise from
version archives,” in Proceedings of the 2008 International Working
Conference on Mining Software Repositories, ser. MSR ’08. New
York, NY, USA: ACM, 2008, pp. 121–124. [Online]. Available:
http://doi.acm.org/10.1145/1370750.1370779

[13] G. Gousios, E. Kalliamvakou, and D. Spinellis, “Measuring developer
contribution from software repository data,” in Proceedings of the 2008
International Working Conference on Mining Software Repositories,
ser. MSR ’08. New York, NY, USA: ACM, 2008, pp. 129–132.
[Online]. Available: http://doi.acm.org/10.1145/1370750.1370781

[14] A. T. Ying and M. P. Robillard, “Developer profiles for recommen-
dation systems,” in Recommendation Systems in Software Engineering.
Springer, 2014, pp. 199–222.

[15] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this
bug?” in Proceedings of the 28th International Conference on Software
Engineering, ser. ICSE ’06. New York, NY, USA: ACM, 2006, pp. 361–
370. [Online]. Available: http://doi.acm.org/10.1145/1134285.1134336

[16] J. Marlow and L. Dabbish, “Activity traces and signals in software
developer recruitment and hiring,” in Proceedings of the 2013
Conference on Computer Supported Cooperative Work, ser. CSCW ’13.
New York, NY, USA: ACM, 2013, pp. 145–156. [Online]. Available:
http://doi.acm.org/10.1145/2441776.2441794

http://doi.acm.org/10.1145/2441776.2441791
http://doi.acm.org/10.1145/2441776.2441791
http://www.sciencedirect.com/science/article/pii/S0950584906001820
http://www.sciencedirect.com/science/article/pii/S0950584906001820
http://doi.acm.org/10.1145/581339.581401
http://doi.acm.org/10.1145/1370750.1370779
http://doi.acm.org/10.1145/1370750.1370781
http://doi.acm.org/10.1145/1134285.1134336
http://doi.acm.org/10.1145/2441776.2441794

	Introduction
	Approach
	Concept Extraction Overview
	The DBPedia Ontology
	A Concrete Example

	Developer Profile Extraction
	Concept weighting
	Concept matching

	Preliminary Results
	Related Work
	Conclusions
	References

